Gravity with Gravitas: A Solution to the Border Puzzle

James E. Anderson and Eric van Wincoop

2. The Gravity Equation: Theory taken seriously
 2.1 Model set-up
 2.2 New model solution
 2.3 Three main insights

3. Solving the Puzzle
 3.1 Implications from the theoretical model
 3.2 New regression model
 3.3 Where did McCallum go wrong?

4. Conclusion
Regression estimated

\[\ln x_{ij} = k + \alpha_1 \ln y_i + \alpha_2 \ln y_j + \alpha_3 \ln d_{ij} + \alpha_4 \ln (B \ - \ Dummy)_{ij} + \varepsilon_{ij} \]

Data from 1988

- trade flows between US states and Canadian provinces (state-province trade)
- Canadian interprovincial trade flows

Estimation results

- \(\exp(\alpha_4) = \exp(3.06) = 22 \)
McCallum (1995):
US-Canadian Border meant that 1988 trade between Canadian provinces is a factor 22 (2,200 %) times trade between US states and Canadian provinces!
Assumptions

- Goods are differentiated by place of origin
- Constant elasticity of substitution utility function
- Multiplicative transportation costs

Maximization problem

\[
\max_{c_{ij}} U(c_{ij}) = \left(\sum_i \beta_i^{(1-\sigma)/\sigma} c_{ij}^{(\sigma-1)/\sigma} \right)^{\sigma/(\sigma-1)}
\]

\[
\text{s.t. } \sum_i p_{ij} c_{ij} = y_j
\]

Trade cost factor \(t_{ij} \)

\[
p_{ij} = p_i t_{ij}
\]

Nominal export value

\[
x_{ij} = p_i c_{ij} + (t_{ij} - 1) p_i c_{ij} = p_{ij} c_{ij}
\]

Total income of exporting region \(i \)

\[
y_i = \sum_j x_{ij}
\]
2. The Gravity Equation: Theory taken seriously

2.1 Model Set-up

Solution

\[x_{ij} = \left(\frac{\beta_i p_i t_{ij}}{P_j} \right)^{(1-\sigma)} y_j \] with

\[P_j = \left(\sum_i (\beta_i p_i t_{ij})^{1-\sigma} \right)^{1/(1-\sigma)} \]

General equilibrium through substitutions

\[x_{ij} = \frac{y_i y_j}{y_{World}} \left(\frac{t_{ij}}{P_i P_j} \right)^{1-\sigma} \] with

\[P_j^{1-\sigma} = \sum_i P_i^{\sigma-1} \theta_i t_{ij}^{1-\sigma} \]

New equation

McCallum's equation

Price index: Multilateral resistance
The theoretical gravity equation predicts that trade between countries – after controlling for country sizes – is dependent on the bilateral trade barrier between them relative to average trade barriers that both countries face with all of their trading partners.

\[x_{ij} = \frac{y_i y_j}{y_{\text{World}} \left(\frac{t_{ij}}{P_i P_j} \right)^{1-\sigma}} \text{ with } P_j^{1-\sigma} = \sum_i P_i^{\sigma-1} \theta_i t_{ij}^{1-\sigma} \]
2. The Gravity Equation: Theory taken seriously

2.2 Model Solution

- **Size matters!** Larger (richer) countries import and export more.
- **Trade barriers matter!** Larger bilateral trade barriers t_{ij} between any two countries i and j lower trade flows between i and j.
- **Relative trade barriers matter!** Multilateral resistance of importer j or exporter i raise trade flows between them.
- Multilateral trade resistance depends on relative sizes and relative trade barriers \Rightarrow three main implications…

Theoretical gravity equation

$$x_{ij} = \frac{y_i y_j}{y_{world}} \left(\frac{t_{ij}}{P_i P_j} \right)^{1-\sigma} \text{ with } P_j^{1-\sigma} = \sum_i P_i^{-1} \theta_i t_{ij}^{1-\sigma}$$
2. The Gravity Equation: Theory taken seriously

2.3 Three main insights

IMPLICATION 1
Trade barriers reduce (size-adjusted) trade between large countries more than between small countries.

IMPLICATION 2
Trade barriers raise (size-adjusted) trade within small countries more than within large countries.

\[
x_{ij} = \frac{y_i y_j}{y_{World}} \left(\frac{t_{ij}}{P_i P_j} \right)^{1-\sigma}
\]

with \(P_j^{1-\sigma} = \sum_i P_i^{\sigma-1} \theta_i t_{ij}^{1-\sigma} \)
2. The Gravity Equation: Theory taken seriously

2.3 Three main insights

Large country
- Most goods consumed are produced domestically
- Trade barriers affect imported goods = a small fraction
- Multilateral resistances are **hardly** affected

Small country
- Most goods consumed are imported goods
- Trade barriers affect imported goods = a high fraction
- Multilateral resistances are **much** affected
2. The Gravity Equation: Theory taken seriously
2.3 Three main insights

IMPLICATION 1
Trade barriers reduce (size-adjusted) trade \textit{between} large countries more than between small countries.

IMPLICATION 2
Trade barriers raise (size-adjusted) trade \textit{within} small countries more than within large countries.

IMPLICATION 3
Trade barriers raise the ratio of (size-adjusted) \textit{INTRA}national trade within country 1 relative to (size-adjusted) \textit{INTER}national trade between countries 1 and 2 by more the smaller is country 1 and the larger is country 2.

\[
x_{ij} = \frac{y_i y_j}{y_{world}} \left(\frac{t_{ij}}{P_i P_j} \right)^{1-\sigma} \text{ with } P_j^{1-\sigma} = \sum_i P_i^{\sigma^{-1}} \theta_i t_{ij}^{1-\sigma}
\]
3. Solving the Puzzle
3.1. Implication from the theoretical model

- **IMPLICATION 3** gives a founded explanation for McCallum’s high border effect

 ![Impact of borders on INTRAnational trade to INTERnational trade](image)

- For a **relatively small country** such as Canada, the ratio of INTRAnational Canadian trade relative to INTERnational US-Canadian trade is expected to be particularly high!

- Canada’s relatively **small size is part of reason** for high border effect, and thus for the Puzzle!

 …another reason lies in the regression model used by McCallum:
3. Solving the Puzzle
3.2. New regression model

\[x_{ij} = \frac{y_i y_j}{y_{world}} \left(\frac{t_{ij}}{P_i P_j} \right)^{1-\sigma} \]
with \(P_j^{1-\sigma} = \sum_i P_i^{\sigma-1} \theta_i t_{ij}^{1-\sigma} \)

Trade cost factor

\[t_{ij} = b_{ij} d_{ij}^\rho \]

Border dummy \rightarrow Distance

Theoretical gravity equation

\[\ln x_{ij} = k + \ln y_i + \ln y_j + (1-\sigma) \rho \ln d_{ij} + (1-\sigma) \ln b_{ij} - (1-\sigma) \ln P_i - (1-\sigma) \ln P_j + \varepsilon_{ij} \]

Neglecting \(P_i \) and \(P_j \) causes omitted variable bias since they are indirectly correlated with \(d_{ij} \) and \(b_{ij} \)

KEY DIFFERENCE TO McCALLUM’s EQUATION
3. Solving the Puzzle
3.2. New regression model

Results from the new regression model

- Larger multilateral resistances in small countries than in large countries → **Implications 1-3 strongly confirmed by data**

- Border reduces trade between US and Canada by 44% and increases interprovincial trade by factor 6 → **Ratio 10.6 vs. McCallum’s 22**

- Borders reduce trade by moderate amounts of 20-50%
3. Solving the Puzzle
3.3. Where did McCallum go wrong?

Two reasons for McCallum‘s large border effect

Relative size of Canadian economy
Small size leads to high increase in interprovincial Canadian trade with an introduction of trade barriers; McCallum‘s ratio is thus expected to be very high!

Omitted variable bias
Not including multilateral resistance terms implies endogeneity in the regression. Endogeneity causes biased estimators!
4. Conclusion

Commonly estimated gravity equations
- have a good fit to the data, but
- are not theoretically founded,
- lead to biased estimation and
- an incorrect comparative statics analysis.

Theoretically founded gravity equation
- can explain the enormous border effects previously found and thus provide a convincing solution to the Border Puzzle
- finds that borders reduce bilateral trade levels by plausible though substantial magnitudes.
Thank you.