Do Multinationals Transplant their Business Model?§

Dalia Marin* Linda Rousova** Thierry Verdier***
University of Munich European Central Bank Paris School of Economics

July 2016

Abstract

What determines whether or not multinational firms transplant their mode of organisation to other countries? We embed the theory of knowledge hierarchies in an industry equilibrium model of monopolistic competition to examine how the economic environment may affect the decision to transplant the business organization. We test the theory with original data of 660 multinational firms and 2200 of their affiliates. Three factors stand out: a competitive host market, the corporate culture of the multinational firm, and the transfer of an innovative technology. These factors increase the respective probabilities of organisational transfer by 9, 18, and 27 percentage points.

Keywords: organisational economics of multinational firms, trade and organisation, the theory of the firm, organisational transfer between countries

JEL Codes: D23 F12 F23 F61

§ Marin would like to thank the Harvard University Department of Economics, where some of this paper was written, for its hospitality. We would like to thank participants at the American Economic Association Meeting, San Diego 2013, the European Economic Association Meeting, Malage 2012, the Italian Trade Study Group Meeting, Trent, Paola Conconi for helpful comments, and Jan Schymik for excellent research assistance. We also gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft through SFB/TR 15 and the European Commission under the FP7 Framework programme “SCience, Innovation, FIrms and Markets in a Globalised World (SCI-FI GLOW)”. This paper should not be reported as representing the views of the European Central Bank (ECB). The views expressed are those of the authors and do not necessarily reflect those of the ECB.

* University of Munich, dalia.marin@lmu.de, ** European Central Bank, linda.rousova@ecb.europa.eu, *** Paris School of Economics and ENPC-Paris Tech, thierry.verdier@ens.fr
1 Introduction

When multinational firms invest abroad, they surprisingly often do not operate with the same organisational form as their parent firms in the home country. Table 1 documents for the first time that in 68.4 percent of foreign investments, multinational firms do not transplant their parent firm’s mode of organisation to the affiliate firm in the host country. The numbers shown in Table 1 are based on survey data we designed and collected on the internal organisation of 660 Austrian and German multinational firms with 2200 of their affiliates in Eastern Europe (for more details on the survey and the data, see Section 5.1). We collected information on the hierarchical level of 13 corporate decisions of affiliate and parent firms, such as decisions on acquisitions, finance, budget, R&D, new strategy, firing of personnel, etc. (see Table 7 of the Data Appendix for a full listing of corporate decisions and Figure 7 of Appendix B for the frequency of transplanting individual corporate decisions). The measure of organisational transfer we use is based on the number of corporate decisions which are taken at the same hierarchical level in the affiliate firm as in the parent firm.\(^1\)

Why are business organisations so little transplanted? Why do the same firms use different organisations in different markets? Most of the literature on multinational firms assumes that they bring technology and organisational skills to the host countries. In a recent paper, Bloom, Van Reenen, and Sadun (2012) suggest that multinational firms are more decentralised than domestic firms because they take with them the more decentralised organisation from their parent firms when they invest in other countries. But the data on the frequency of exporting the organisational form to host countries documented in Table 1 does not suggest that organisational transfer can be taken for granted. The recent literature on international trade shows that multinational firms tend to be larger and more productive than firms that serve only the national market (see Helpman, Melitz, and Yeaple (2004)). The larger firm sizes of multinational corporations may by itself explain why they operate with a more decentralised organisation than do national firms. In fact, two recent papers on trade and organisation based on different theories of firm hierarchies (see Marin and Verdier (2014); Caliendo and Rossi-Hansberg (2012)) predict that larger firms more exposed to international trade are more decentralised. What, then, determines whether or not a multinational firm transplants its mode of organisation to other countries?

In this paper, we focus on the role of the economic environment in the decision to export the organisational form to other countries. If ‘corporate culture’ matters, we expect a priori that firms will operate with the same organisational form in the countries they invest in.\(^1\)

\(^1\)For more details on the measure of organisational transfer, see note 1 of Table 1 and Table 8 of the Appendix.
Table 1: DO MULTINATIONALS TRANSPLANT THEIR BUSINESS MODEL?

<table>
<thead>
<tr>
<th>Parent Firm in:</th>
<th>Business model</th>
<th>Fully 1</th>
<th>Transplanted</th>
<th>Close-to-fully 1</th>
<th>Partially 1</th>
<th>Not transplanted 1</th>
<th>Total Affiliate Firms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>112</td>
<td>66</td>
<td>66</td>
<td>638</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.7%</td>
<td>7.5%</td>
<td>7.5%</td>
<td>72.3%</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>84</td>
<td>56</td>
<td>38</td>
<td>275</td>
<td>453</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.5%</td>
<td>12.4%</td>
<td>8.4%</td>
<td>60.7%</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Affiliate Firms</td>
<td>196</td>
<td>122</td>
<td>104</td>
<td>913</td>
<td>1335</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.7%</td>
<td>9.1%</td>
<td>7.8%</td>
<td>68.4%</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: The table reports the absolute number of cases and row percentages.

1 The degree of transplantation (full, close-to-full, partial and no transplantation) depends on the number of corporate decisions which are taken at the same hierarchical level in the parent and subsidiary firms. For a listing of corporate decisions, see Table 7 in Appendix B. The organisational form is fully transplanted if each corporate decision obtained the same hierarchical rank for the subsidiary firm as for the parent firm. It is close-to-fully transplanted if only one corporate decision differs, and partially transplanted if two corporate decisions differ. The organisational form is not transplanted if three or more corporate decisions are different.

Presumably, once the firm has developed an organisational routine which serves it well, it might as well use this routine in other countries. One possible reason why this often does not happen is that the economic environment may force firms to adjust their organisational form to the conditions prevailing in those markets.

To get a first impression of whether the economic environment matters for the frequency of exporting one’s business organisation, we look, in Table 1, at whether the size of the home market of a multinational firm is correlated with the decision to transplant its mode of organisation. We use market size as a proxy for competition. This is indeed the case. German multinationals, located in the larger economy, transplant their organisational form significantly more often than Austrian multinationals, located in the smaller home market.

Furthermore, in Figure 1, we show that the market size of the host country in Eastern Europe is correlated with the frequency with which the parent multinational firm, whether from Austria or Germany, brings its organisational form with them when they invest in these countries. The figure ranks the host countries by their size in terms of GDP (with Bosnia the smallest and Russia the largest) and appears somewhat to suggest that multinational firms transplant their organisational forms more often to smaller host markets. Equipped with this information, we proceed in this paper with a theory in which multinational firms’ decisions to transplant their organisational forms will be described as a function of the monopolistic competitive environment they face in the home market and in the host market. We then expose this theory to the survey data of 660 multinational firms and their 2200 affiliate firms in Eastern Europe.

2 Larger economies have more firms and thus have a higher degree of competition, see Melitz and Ottaviano (2008).

3 Austria has a population of 8 million people, but Germany has 80 million.
Figure 1: HOST COUNTRY SIZE AND THE DECISION TO TRANSPLANT THE ORGANISATIONAL FORM

Notes: The figure shows the percentage of affiliate firms in a given host country with parent firm organisational form fully or close-to-fully transplanted. Host countries are sorted by size of GDP from left (smallest GDP) to right (largest GDP). Countries with less than 8 affiliate firms are not shown.

We model an economy in which multinational firms decide how to organise production in the parent firm in the home market and the affiliate firm in a host country. We follow a simplified version of Garicano (2000) and Garicano and Rossi-Hansberg (2006) and model the organisation of a multinational firm as a knowledge-based hierarchy in which the divisional managers in the parent firm and the affiliate firms deal with routine problems and headquarters (top managers) solve the exceptional problems. To solve problems, divisional managers need to acquire knowledge, which is costly. Therefore, it is efficient for the firm to let the top managers learn how to solve the more complex problems. The problem of the firm is to decide on the level of decentralisation to divisional managers. A more decentralised organisation of production allows the firm to save on top managerial wages and communication costs at the expense of larger training costs for the divisional managers.

We incorporate this model of knowledge hierarchy into a framework with monopolistic competition. Multinational firms compete with local firms in the home and host markets. They have two options in the choice of organisation. They may use the same level of decentralisation in the subsidiary as in the parent firm. In this case, they transplant the organisation to the subsidiary firm. Alternatively, multinational firms may choose different levels of decentralisation for the parent and subsidiary firm. In this case, they do not transplant the organisation. We solve for the industry equilibrium and we show that when multinational firms decide to transplant the organisational mode to the subsidiary
firms in the host market, they transmit the competitive conditions of one market to those of the other market. By affecting the costs of production, the organisational choice of a multinational firm acts as a transmission mechanism through which the competitive conditions in the home and host markets are linked. The link is at work in spite of the fact that competition is segmented in the two markets, since we do not allow international trade to take place.

We show further that the decision to transplant the organisational form becomes a function of the economic environments multinational firms face in their home and host markets. More specifically, we find that a larger home market and weaker competition in this market lead multinational firms to transplant their organisational mode more frequently. Multinational firms weigh the benefit to have the business organisation adjusted closer to the optimal organisational form fitting the home market relative to the benefit of having the business organisation adjusted closer to the optimal organisational form fitting to the foreign market. At the margin, the firm will lean towards the organisational form where the adjustment generates larger profits. In a larger home market, the profits in the home market weigh relatively more than those from the foreign market, and the multinational firm transplants the organisational form to the subsidiary firm in the host market. At the same time, however, a larger home market induces firm entry, increasing competition, which makes it less important to the profitability to have the organisation fitted optimally to the home market conditions. It turns out that the market size effect dominates the competition effect and an increase in the size of the home market leads unambiguously to more multinational transplanting. Similarly, weaker competition in the home market makes it more important for the profits to have the organisation optimally adjusted to the home market conditions, and thus multinational firms are more likely to transplant the organisational form to the subsidiary in the host market.

In a larger host market and weaker competition in this market, it hurts the profits of the multinational firm more when its subsidiary firm operates with an organisational form which is not optimally adjusted to the host market conditions. When the subsidiary firm operates with the same level of decentralisation as the parent firm (when the organisation is transplanted) each unit of output is sold with a lower profit margin, reducing total profits when more units of output are sold in the larger market. This discourages the multinational firm from transplanting the organisation when the host market increases, in spite of the fact that competition intensifies in the larger host market.

We then examine how a continuous increase in competition in the home market (globalisation) affects the reorganisation of an individual multinational firm. We show that an increase in competition in the home market leads to an extensive and intensive
margin of reorganisation in the multinational corporation. At first, when competition is still weak, the multinational firm transplants its organisational form from the parent to the subsidiary firm. The multinational firm adjusts, however, the level of decentralisation of the whole multinational corporation towards an organisational pattern that fits optimally the subsidiary firm’s market conditions. The multinational corporation becomes more decentralised (the intensive margin of reorganisation). This process can be seen as a kind of ‘reverse transplanting’, in which the parent firm’s organisation is modified to converge towards the optimal organisation of the subsidiary firm. When competition in the home market increases further, the multinational firm shifts to the ‘no-transplant’ strategy (the extensive margin of reorganisation). A major reorganisation in the multinational corporation follows when the organisations of the parent firm and of the subsidiary firm become disconnected.

We also find that gravity factors, such as distance and communication costs, and the cost of training managers matter for the decision to export the business model to the subsidiary firms in the host country. An increase in communication costs has an ambiguous influence on the probability of transplanting the mode of organisation. Furthermore, the multinational firms will transplant the organisational form less when the training costs of managers in the home market increase, and they will transplant it more when the training costs of managers in the host market increase. Finally, multinational firms with a stronger corporate culture and with a more innovative technology are more likely to transplant their mode of organisation to the host country. A stronger corporate culture makes operating with two organisational routines more costly, thus increasing the probability of the multinational’s transplanting. A more innovative technology is more complex and increases the training costs of managers in the affiliate firms, which, in turn, encourages the multinational to transplant. Thus, organisational transfer and technology transfer appear to be complements.

We confront the predictions of our theory with original firm survey data we collected and designed from 660 Austrian and German multinational parent firms with their 2200 affiliate firms in Eastern Europe. In the empirical analysis, we test for the probability of transplanting the organisational form and we show that the market environment variables and gravity factors are economically important for the probability of organisational transfer to host countries. For example, we find that when the ratio of the population of the host country to that of the home country, as a measure of relative market size, increases by 1, the probability of transplanting declines by about 2.7 percentage points. In our data, this means that if a German multinational firm moves its affiliate firm from the smaller Ukraine to the larger Russia, the probability of transplanting the organisational form declines by 2.4 percentage points. When affiliate firms face an increase in the share of multinational
competitors (our measure of the toughness of competition) in their host markets by 10 percentage points, the probability of transplanting increases by 9 percentage points, while an increase in the share of multinational competitors in the home market by 10 percentage points lowers this probability by 11 percentage points. When the distance between the parent and affiliate firm (our proxy for communication costs) doubles, the probability of transplanting the organisational mode declines by 7.4 percentage points. Finally, when the share of people with tertiary and secondary education in the host market increases by 10 percentage points, thus lowering the training costs of managers, the decision to export the business model decreases by 6 percentage points.

Moreover, multinational firms with human resource policies in place (our measure of corporate culture) are 18 percentage points more likely, and multinational firms which transfer an innovative technology to the affiliate firms are 27 percentage points more likely, to transfer their organisational mode to the host country.

While there is a large economic literature which has examined the determinants of technology transfer between countries (for a recent survey, see Harrison and Rodriguez-Clare (2010)), research on organisational transfer between countries virtually does not exist. However, there is a large empirical literature in international business which emphasises the tension between the adjustment to local market conditions and the transfer of the mode of organisation and of human resource management practices in multinational firms, see for example Florida and Kenney (1991). Moreover, the literature on the transplanting of culture between countries that follows the epidemiological approach (see Fernandez (2011)) is related to what we do in this paper. The epidemiological approach tries to separate the effect of culture from the economic and institutional environment by studying variations in outcomes across groups with different cultural backgrounds (immigrants, diplomats) residing in the same country (see Fernandez and Fogli (2009) and Fisman and Miguel (2007)). We instead want to understand the role of the economic environment in corporate outcomes in firms that share the same corporate culture, by coming from the same multinational parent firms but differing in the economic environments faced by their affiliated firms in their differing host countries.

For an overview, see Helpman, Marin, and Verdier (2008) and Marin (2015).
trade influences the business model firms choose at home. More recently, an empirical literature on firm decentralisation has emerged with a focus on national firms. This literature examines the trend towards decentralisation of US firms (Rajan and Wulf (2006)), how information technology (Bloom, Van Reenen, and Sadun (2012); Acemoglu, Aghion, Lelarge, Van Reenen, and Zilibotti (2007)), international trade and competition (Marin and Verdier (2012, 2014), Guadalupe and Wulf (2010) and Caliendo, Monte, and Rossi-Hansberg (2012)), and trust and religion (Bloom, Van Reenen, and Sadun (2010)) affect the level of decentralisation of firms.

The present paper is organised into the following sections. Section 2 describes the product market with monopolistic competition, introduces the organisational form of multinational firms as a knowledge hierarchy, and derives the optimal level of decentralisation in the firm. Section 3 embeds the model of knowledge hierarchies in a one sector economy with monopolistic competition and examines the determinants of the decision to transplant the organisational form. Section 4 solves for the industry equilibrium and derives the conditions under which multinational firms will transplant their organisational forms to the affiliate firms in the host market. Section 5 describes the data and the empirical results, and Section 6 concludes. The proofs of the main results and the description of the data are relegated to the Appendix.

2 A Generic Economy

Demand Side

Consider an economy with \(L \) consumers whose preferences are defined over a continuum of differentiated varieties indexed by \(i \in \Omega \) and a homogenous good chosen as the numeraire. Preferences are given by

\[
U = q_0 + \int_{i \in \Omega} q^i di - \frac{1}{2} \gamma \int_{i \in \Omega} q^i_d di - \frac{1}{2} \left[\int_{i \in \Omega} q^i di \right]^2,
\]

where \(q_0 \) and \(q^i \) are, respectively, the consumptions of the numeraire good and of variety \(i \) of the differentiated good.

Utility maximisation for a typical consumer provides demand for each variety \(i \)

\[
d_i(p_i, \bar{p}) = \frac{1}{\gamma + N} - \frac{1}{\gamma} p_i + \frac{N}{\gamma + N} \frac{1}{\bar{p}}, \tag{1}
\]
where \(d_i(p_i, \bar{p}) \) is the market demand for variety \(i \), \(\gamma \) is the degree of product differentiation between varieties \(i \), \(p_i \) is the price of variety \(i \), and \(\bar{p} = \frac{1}{N} \int_{i \in \Omega} p_i \, di \) is the average price index \(\bar{p} \) in the differentiated good sector. The aggregate demand for variety \(i \) is simply \(q_i(p_i, \bar{p}) = Ld_i(p_i, \bar{p}) \).

Supply Side

The numeraire good 0 is produced with constant returns to scale (one unit of good 0 requires one unit of labour) under perfect competition. Each variety of the differentiated good is produced under monopolistically competitive conditions. A given variety \(i \) is produced with marginal cost \(c_i \). The equilibrium monopolistic profit level of a firm with cost \(c_i \) is

\[
\pi(c_i) = \frac{L}{4\gamma} \left[c_D - c_i \right]^2
\]

where \(c_D \) is a cutoff cost level

\[
c_D = \frac{2\gamma}{2\gamma + N} + \frac{N\eta}{2\gamma + N} \bar{c}
\]

which is the cost level of a firm indifferent between remaining in or leaving the industry. \(\bar{c} \) is the average cost in the industry: \(\bar{c} = \frac{1}{N} \int_{i \in \Omega} c_i \, di \). Firms with cost \(c_i < c_D \) earn positive profits. The cutoff cost level \(c_D \) captures the ‘toughness’ of competition in an industry. In this linear demand system (1), in addition to the taste for variety parameter \(\gamma \), the markup is determined by the toughness of competition in the market induced either by lower average costs \(\bar{c} \) or a larger number of varieties \(N \).

Knowledge Hierarchies

We turn now to the internal organisation of a multinational firm and its subsidiaries in foreign markets. We consider the organisation of a multinational firm as a knowledge hierarchy, as in Garicano (2000) and Garicano and Rossi-Hansberg (2006). Production is described as a problem solving and information processing activity, in which there is a basic trade-off between communication and information access. The role of a hierarchy is to facilitate the acquisition of knowledge by increasing its utilisation rate. We use a simple version of this framework to extend the theory towards a setting with market competition and multinational firms.

\footnote{For more details, see Ottaviano, Tabuchi, and Thissen (2002).}
Multinational firms choose the hierarchy of their organisation by taking the following considerations into account. There are two types of managers: production managers (who we alternatively also refer to as divisional managers), who draw a unit measure of problems (or tasks or decisions) in $[0, 1]$ per unit of time, and headquarters managers, who coordinate the production projects of the divisional managers and also help solve production problems that production managers are unable to solve. Production takes place only if all problems are dealt with by someone in the organisation and are coordinated at the level of the firm. We normalise to 1 the output per production manager and per unit of time once problems are solved. The problems are distributed according to a density function $f(z)$. Without loss of generality, the problems are ordered such that $f'(z) < 0$, i.e., more common problems have a lower index. Agents can only deal with a problem or task if they have the relevant knowledge.

The training cost for divisional managers to acquire the knowledge to deal with all problems with complexity less than z is $a_p z$. This cost may depend on the technology available to different agents, their skill, and local market conditions in the country where the agent is. The cost of training a divisional manager depends therefore on his autonomy z (the level of complexity of problems that he can solve). When that autonomy is reduced, so that the divisional manager has only the knowledge for dealing with the most common problems, i.e., those in $(0, z_p)$, he asks for help for the more complex problems (those with $z > z_p$) from top management, who may solve the problem. We assume that top managers (headquarters) have the necessary skills to be able to solve problems for all tasks in $[0, 1]$.

The value of an additional layer of problem solvers is to reduce the cost of training workers to higher autonomy levels. The cost of hierarchy is the time wasted, since problem solvers do not produce output, but instead use their time to help divisional managers solve their problems.

Suppose then that the organisation must deal with q problems per unit of time. The team needs then $N_p = q$ divisional managers in layer 0 and M top managers (problem solvers) at headquarters. The profits generated by this hierarchy with N_p divisional managers, each receiving a wage w_p, and M top managers specialised in ‘problem solving’ receiving a wage w_m is

$$\pi = P(q)q - (w_p + a_p z_p) N_p - w_m M.$$ \hspace{1cm} (4)

When the N_p divisional managers have autonomy z_p, they must learn the z_p most common problems. It is also assumed that the learning technology is such that top managers know

6In other words, $z_m = 1$.

10
all the tasks that the production managers also know, and that the knowledge overlaps. Whenever the production managers confront problems or decisions for which they do not have enough information, so that they need help, a communication cost \(h \) (for a helping cost) per question posed must be incurred. The communication cost is only incurred when the problem could not be solved at first and help must be sought. These communication costs depend on the specifics of the organisational form and how agents interact in the organisation. In particular, the geographic distance between the divisional managers and the top managers matters.

A divisional manager can deal with a fraction \(F(z_p) \) of the tasks and passes on \((1-F(z_p))\) to a top manager in the headquarters, who spends time \(h(1-F(z_p)) \) helping each of the divisional managers assigned to him. Each top manager is endowed with 1 unit of time. Since there are \(N_p \) divisional managers, the time constraint of a particular top manager is given by

\[
sh(1 - F(z_p)) = 1,
\]

where \(s \) is the span of control, or ratio of divisional managers per top manager \(s = N_p/M \). The top manager spends \(sh(1 - F(z_p)) \) time solving problems. It follows that the number of top managers needed to deal with a firm of size \(N_p \) of divisional managers is simply given by

\[
M = h(1 - F(z_p))N_p
\]

This constraint determines a trade-off between what production managers can do and how many top managers are needed. The more knowledge is acquired by divisional managers, the smaller is \(sh(1 - F(z_p)) \) and the fewer top managers are needed.

Recalling that a given output level \(q \) necessitates \(N_p = q \) divisional managers, the profits of the firm can be easily rewritten as

\[
\pi = P(q)q - c(z_p)q.
\]

with \(c(z_p) \) the average cost of production, given by

\[
c(z_p) = w_p + a_p z_p + h[1-F(z_p)]w_m.
\]

For a given level of output \(q \), the problem of the multinational firm is to decide the degree of worker autonomy \((z_p) \) to minimise the average costs of production \(c(z_p) \). This results in

\[
-c_z(z_p) = 0. \tag{5}
\]
The solution of this equation provides the optimal degree of decentralisation of a multinational firm z^*_p or
\[
 z^*_p = f^{-1} \left[\frac{a_p}{hw_m} \right]
\]
which depends on the training costs of the production managers a_p, the top managers’ wages w_m, and the communication costs between top managers and divisional managers h. A more decentralised hierarchy (a larger value of z_p) allows a firm to save on top managerial wages and communication costs at the expense of larger training costs for the divisional managers.

3 A Model of Transplanting the Organisation

We now embed a model of knowledge hierarchies into a framework with monopolistic competition and multinational firms. Multinational firms compete on a product market as described in the previous section. To simplify, we abstract from the subscript i. They have an inverse demand function $P(q)$ where output q is produced with productive labour only. Consider m multinational firms operating in two segmented markets: a home market H with n_H local domestic firms and the m multinational parent firms, and a foreign market F with n_F local foreign firms competing with the multinational subsidiary firms. Each multinational firm has one subsidiary firm in F. We assume that local firms (domestic and foreign) do not have knowledge hierarchies (all production problems are solved at the bottom level) and they produce their output with marginal costs c_H and c_F, respectively. Multinational firms and their subsidiaries have a one-level hierarchical organisation between headquarters’ managers and divisional (or production) managers.

Following the previous section, the marginal costs of the parent and the subsidiary firms depend on the degree of decentralisation z between headquarters managers and divisional managers. Headquarters managers are assumed to reside in the home country H only. For a given level of decentralisation z in the multinational parent firm, the marginal costs of production of parent firms are $c^m_H(z) = w^H_p + a^H_p z + h[1 - F(z)]w_m$. w^H_p and a^H_p are the divisional managers’ wages and training costs in the parent firm in country H. w_m is the wage of the headquarters managers. For a given level of decentralisation between the headquarters managers and the divisional managers in the subsidiary firm, the marginal

\footnote{Note that the optimal degree of decentralisation does not depend on the output size of the firm. This is because we assume that there are no hiring constraints at any level of the firm hierarchy, and we assume a production function for output with constant returns to scale.}
costs of production of the subsidiary firms are \(c_F^m(z) = w_p^F + a_p^F z + h [1 - F(z)] w_m (1 + \delta) \). \(w_p^F \) and \(a_p^F \) are the subsidiary (divisional) managers’ wages and training costs in country \(F \). The cost of communication between headquarters and subsidiary managers is increased from \(h \) to \(h (1 + \delta) \), because subsidiary managers reside in \(F \), not the multinational headquarters (which is located in \(H \)).

The optimal level of decentralisation in the parent firm in \(H \) may differ from that in the subsidiary firm in \(F \). The optimal level of decentralisation of the parent firm in \(H \) is given by

\[
z_H^p = f^{-1} \left[\frac{a_H^p}{hw_m} \right] = \arg \min c_H^m(z)
\]

The optimal level of decentralisation of the subsidiary firm in \(F \) is

\[
z_F^p = f^{-1} \left[\frac{a_F^p}{h (1 + \delta) w_m} \right] = \arg \min c_F^m(z)
\]

The multinational firms have two options. They may use the same organisation (the same level of decentralisation \(z \)) in the subsidiary firm in \(F \) as in the parent firm in \(H \). We call this a ‘transplant’ strategy. Alternatively, the multinational firm may choose different levels of decentralisation for the parent and subsidiary firm. We call this a ‘no-transplant’ strategy. With the ‘no-transplant’ strategy, the multinational firm adopts the level of decentralisation \(z_H^p \) in the parent firm and \(z_F^p \) in the subsidiary firm. The parent firm operates then with the marginal costs \(c_H^m(z_H^p) = c_H^m \) and the subsidiary firm produces with the marginal costs \(c_F^m(z_F^p) = c_F^m \). However, the ‘no-transplant’ strategy involves an efficiency loss at the parent firm due to frictions in coordinating activities between firms with different organisational routines. This efficiency loss is assumed to increase the parent firms’ costs by some factor \(1 + \theta \). With the ‘transplant’ strategy, the multinational firm saves these coordination costs, but it prevents the firm from optimally adjusting its organisation to the market conditions prevailing in each local market.

Stage Game We consider the following game structure, which allows us to analyse the industry equilibria in the domestic market \((H) \) and the host market \((F) \) given a fixed number \(m \) of established multinational firms operating in the global economy. Each multinational is assumed to have one parent division in market \(H \) and one subsidiary in market \(F \).

- Stage 1: Local domestic firms \(n_H \) and local foreign firms \(n_F \) decide to enter their
respective markets H and F. They pay a fixed cost of entry, F_H and F_F, respectively.

- Stage 2: The multinational parent firms m decide whether or not to transplant the organisation to their subsidiary firms. With the ‘transplant’ strategy, z is constrained to be the same across markets and is chosen optimally to maximise the total profits of the multinational firm. With the ‘no-transplant’ strategy, the multinational firm implements z^H_p and z^F_p in markets H and F, respectively. The marginal costs of the parent firms are increased by $1 + \theta$, because of the inefficiency of operating with different organisational routines.

We assume, however, that multinational firms are heterogenous with respect to these inefficiency costs. Some firms may be more flexible than others in dealing with different organisational routines. We assume that the parameter θ is distributed on an interval $[0, \theta]$ with a density distribution $g(\theta)$.

- Stage 3: The multinational firms choose the optimal level of decentralisation z^H_p and z^F_p in markets H and F for the ‘no-transplant’ strategy and the optimal joint value of z for the ‘transplant’ strategy.

- Stage 4: The multinationals firms compete in prices in both markets with local domestic firms n_H and local foreign firms n_F.

The model can be solved backwards. Stage 4 is obtained from the standard monopolistic competition model as outlined in Section 2. In stage 3, the optimal level of decentralisation is determined depending on the multinational strategy of ‘transplant’ or ‘no-transplant’. Stage 2 provides the equilibrium decisions of ‘transplant’ versus ‘no-transplant’ of the multinationals, given the market structures in markets H and F. Finally, stage 1 provides the free entry conditions for local domestic and local foreign firms in their respective markets.

The Optimal Organisation

We turn now to stage 3, in which the multinational firms determine the optimal level of decentralisation with the ‘no-transplant’ strategy and choose the optimal joint level of decentralisation under the ‘transplant’ strategy.

The optimal organisation assuming the ‘no-transplant’ strategy When the multinational firms do not transplant their organisation to the subsidiary firm, they will choose $z^H_p = \arg\min c^H_p(z)$ for the parent firm in country H and $z^F_p = \arg\min c^F_p(z)$ for the subsidiary firm in country F.
The optimal organisation assuming the ‘transplant’ strategy

For a given level of decentralisation z, the total profits of the multinational firms are

$$\pi (c^H_D, c^F_D, z) = \frac{L^H}{4\gamma} \left[c^H_D - c^m_H(z) \right]^2 + \frac{L^F}{4\gamma} \left[c^F_D - c^m_F(z) \right]^2$$

For given market toughnesses c^H_D and c^F_D in the two markets, the total profits of the multinational firms with the ‘transplant’ strategy are given by

$$\pi_T (c^H_D, c^F_D) = \max_{z \in [0,1]} \pi (c^H_D, c^F_D, z)$$

The first order condition for the joint organisational form z is

$$\frac{\partial \pi (c^H_D, c^F_D, z)}{\partial z} = -\frac{L^H}{2\gamma} \left[c^H_D - c^m_H(z) \right] \frac{\partial c^m_H}{\partial z} - \frac{L^F}{2\gamma} \left[c^F_D - c^m_F(z) \right] \frac{\partial c^m_F}{\partial z} = 0 \tag{6}$$

We assume that $\pi (c^H_D, c^F_D, z)$ is a concave function of $z \in [0,1]$ and thus the second order condition $\frac{\partial^2 \pi (c^H_D, c^F_D, z)}{\partial z^2} < 0$ holds at the optimum value z^*. We further assume that the cost δ of communication between the headquarters firm and the subsidiary firm is so large that $z^H_p < z^F_p$. Subsidiary firms have more management autonomy z^F_p than parent firms z^H_p when each optimally adjusts its organisation to local market conditions. We show in the Appendix that the optimal joint level of decentralisation z^* determined by (6) satisfies $z^H_p < z^* < z^F_p$. Intuitively, the joint optimal organisation with the ‘transplant’ strategy z^* lies between the optimal level of decentralisation in the parent firm and the subsidiary firm.

Differentiating (6), we get $z^* \left(c^H_D, c^F_D \right)$. With the ‘transplant’ strategy, the multinational firms become more decentralised with tougher competition in H (smaller c^H_D) and they become more centralised with tougher competition in F (smaller c^F_D). Intuitively, the joint optimal organisation z^* for the ‘transplant’ strategy weights the benefit to have the business organisation adjusted closer to the optimal organisational form fitting the home market z^H_p relative to the benefit to have the business organisation adjusted closer to the optimal organisational form fitting the foreign market z^F_p. At the margin, the firm will lean more towards the organisational form where the adjustment generates larger profits. When competition becomes tougher in market H, the profit margin in the home market is less than that in the foreign market F. This induces z^* to be closer to z^F_p, the level of decentralisation of market F which is more decentralised to begin with. Hence, the multinational firms choose to be more decentralised when competition becomes tougher in

8This will be ensured when $c^m_H(z)$ and $c^m_F(z)$ are sufficiently convex in $z \in [0,1]$.

9We show in the empirical part of this paper that this assumption is supported by the data.
H. Conversely, when competition becomes tougher in the foreign market F, it is more important for the multinational firm to adjust its organisational structure towards the one that best corresponds to the home market H with the larger profit margin. Given that the organisation of the parent firm is more centralised to begin with, multinational firms choose therefore to be more centralised when competition increases in F.

The preceding discussion can then be summarised in the following proposition.

Proposition 1. With the ‘transplant’ strategy, multinational firms are more decentralised when competition in the home market increases and they are more centralised when competition in the host market increases.

Proposition 1 implies that the marginal costs of production of parent and subsidiary firms become a function of the toughness of competition at home and abroad:

\[
c_m^H(z^*) = f^H(c_m^H, c_m^F) \\
c_m^F(z^*) = f^F(c_m^H, c_m^F)
\]

A smaller c_m^H (tougher competition in the home market) induces z^* to be closer to the optimal level of decentralisation of the foreign market z_p^F. This is bad news for the parent firm’s costs, which are now further away from the minimum cost level associated with z_p^H. Hence, $c_m^H(z^*)$ goes up when c_m^H goes down. At the same time, a smaller c_m^H is good news for the subsidiary firm’s costs, which are now closer to the minimum cost level associated with z_p^F. Hence, $c_m^F(z^*)$ goes down when c_m^H goes down. The other signs of the variations can be understood by the same logic.

Furthermore, we make the following assumption:

Assumption T: $c_m^H(z^*) < c_H, c_m^F(z^*) < c_F$, and $(1 + \theta) c_m^H(z_p^H) < c_H$

Assumption T states that multinational firms have a technological advantage compared to local firms in markets H and F, and produce with lower costs, independently of whether or not they transplant their organisations.
The Decision to Transplant the Organisation

We can now solve stage 2 to determine the conditions under which multinational firms will transplant their organisations. Write \(x \in [0, 1] \) for the fraction of multinationals which choose to transplant the mode of organisation. Consider a generic multinational firm that suffers an efficiency loss of \(\theta \) if implementing the ‘no-transplant’ strategy. This multinational firms’ profits are

\[
\pi_T (c_D^H, c_D^F) = \max_{z \in [0, 1]} \frac{L}{4\gamma} \left[c_D^H - c_H^m(z^*) \right]^2 + \frac{L}{4\gamma} \left[c_D^F - c_F^m(z^*) \right]^2
\]

for the ‘transplant’ strategy

\[
\pi_{NT} (c_D^H, c_D^F, \theta) = \frac{L}{4\gamma} \left[c_D^H - (1 + \theta) c_H^m(z_H^p) \right]^2 + \frac{L}{4\gamma} \left[c_D^F - c_F^m(z_F^p) \right]^2
\]

for the ‘no-transplant’ strategy

This multinational firm decides to transplant the organisation if and only if

\[
\pi_T (c_D^H, c_D^F) \geq \pi_{NT} (c_D^H, c_D^F, \theta)
\]

This is equivalent to \(\theta \)’s being larger than some threshold \(\theta^* \) given by

\[
\pi_T (c_D^H, c_D^F) = \pi_{NT} (c_D^H, c_D^F, \theta^*)
\]

which can be rewritten as the following threshold condition:

\[
\frac{L}{4\gamma} \left[c_D^H - c_H^m(z^*) \right]^2 + \frac{L}{4\gamma} \left[c_D^F - c_F^m(z^*) \right]^2 = \frac{L}{4\gamma} \left[c_D^H - (1 + \theta) c_H^m(z_H^p) \right]^2 + \frac{L}{4\gamma} \left[c_D^F - c_F^m(z_F^p) \right]^2
\]

or

\[
L \left[(1 + \theta) c_H^m(z_H^p) - c_H^m(z^*) \right] \left[c_D^H - \frac{c_H^m(z^*) + (1 + \theta) c_H^m(z_H^p)}{2} \right] = L \left[c_F^m(z^*) - c_F^m(z_F^p) \right] \left[c_D^F - \frac{c_F^m(z^*) + c_F^m(z_F^p)}{2} \right]
\]

In the Appendix, we show that condition (7) necessarily implies

\[
c_H^m(z^*) < (1 + \theta) c_H^m(z_H^p). \tag{8}\]

Intuitively, for the threshold firm to be indifferent between the ‘transplant’ and the ‘no-transplant’ strategies, the production costs of the parent firm with the ‘no-transplant’
strategy \((1 + \theta^*) c_H^m(z^*) \) have to be larger than the production costs with the ‘transplant’ strategy \(c_H^m(z_H^p) \). The subsidiary firm has lower costs of production with the ‘no-transplant’ strategy than with the ‘transplant’ strategy. Therefore, in order for the multinational firm to be indifferent between the two strategies, the parent firm must have larger costs of production with the ‘no-transplant’ strategy (i.e. \((1 + \theta^*) c_H^m(z^*) > c_H^m(z_H^p) \)).

The threshold cost characterising the decision to transplant is \(\theta^* = \theta\left(c_H^D, c_F^D, L_H, L_F\right) \) and depends on the toughness of competition in the two markets \(H \) and \(F \), and on the sizes \(L_H, L_F \) of those markets. The fraction of multinational firms implementing a ‘transplant’ strategy is

\[
x = \int_{\theta^*}^{\bar{\theta}} f(\theta)d\theta = 1 - F(\theta^*)
\]

We then have the following proposition:

Proposition 2. i) Multinational firms transplant their business organisations less often when competition becomes tougher in the home market \(H \):

\[
\frac{\partial \theta^*}{\partial c_H^D} < 0 \quad \frac{\partial x^*}{\partial c_H^D} > 0
\]

ii) Multinational firms transplant their business organisation more often when competition becomes tougher in the host market \(F \).

\[
\frac{\partial \theta^*}{\partial c_F^D} > 0 \quad \frac{\partial x^*}{\partial c_F^D} < 0
\]

iii) Multinational firms transplant their business organisation more often when the home market \(H \) is larger:

\[
\frac{\partial \theta^*}{\partial L_H} < 0 \quad \frac{\partial x^*}{\partial L_H} > 0
\]

iv) Multinational firms transplant their business organisation less often when the host market \(F \) is larger

\[
\frac{\partial \theta^*}{\partial L_F} > 0 \quad \frac{\partial x^*}{\partial L_F} < 0
\]

Proof. The threshold \(\theta^* \) is given by the condition \(\pi_T\left(c_D^H, c_D^F\right) = \pi_{NT}\left(c_D^H, c_D^F, \theta^*\right) \). Simple
differentiation with respect to c^H_D, c^F_D, L^H and L^F yields
\[
\frac{\partial \pi_T}{\partial c^H_D} - \frac{\partial \pi_{NT}}{\partial c^H_D} = \frac{L^H}{2\gamma} (1 + \theta^*) (c^m_H(z^*_p) - c^m_H(z^*)) > 0
\]
\[
\frac{\partial \pi_T}{\partial c^F_D} - \frac{\partial \pi_{NT}}{\partial c^F_D} = \frac{L^F}{2\gamma} (c^m_F(z^*_p) - c^m_F(z^*)) < 0
\]
and
\[
\frac{\partial \pi_T}{\partial L^H} - \frac{\partial \pi_{NT}}{\partial L^H} = \frac{1}{2\gamma} \left[(1 + \theta^*) (c^m_H(z^*_p) - c^m_H(z^*)) \right] \left[\frac{c^m_H(z^*) + (1 + \theta^*) c^m_H(z^*_p)}{2} \right] > 0
\]
\[
\frac{\partial \pi_T}{\partial L^F} - \frac{\partial \pi_{NT}}{\partial L^F} = \frac{1}{2\gamma} \left[c^m_F(z^*_p) - c^m_F(z^*) \right] \left[\frac{c^m_F(z^*) + c^m_F(z^*_p)}{2} \right] < 0
\]
The proposition follows immediately from the fact that $\pi_{NT}(c^H_D, c^F_D, \theta)$ is decreasing in θ and (9).

Figure 2 illustrates the results and shows the curve $h(\theta) = \pi_T(c^H_D, c^F_D) - \pi_{NT}(c^H_D, c^F_D, \theta)$ as a function of θ. When $\theta = 0$, there is no cost to having two different organisations in the multinational parent and the subsidiary firm. Hence, the ‘no transplant’ strategy generates larger aggregate profits and $h(0) < 0$. When θ is sufficiently large, the loss of efficiency from having two organisational routines become too large. For sufficiently large θ, the ‘transplant’ strategy is preferred and $h(\theta)$ becomes positive. There is a unique threshold θ^* satisfying condition (9), above which the multinational firm transplants the organisation.

The effect of an increase in the toughness of competition in the home market (lower c^H_D) is shown in Figure 3. Lower c^H_D shifts the $h(\theta)$-curve downward and the threshold θ^* increases with a lower fraction of multinational firms undertaking organisational transplanting. Similarly, lower c^F_D shifts the $h(\theta)$-curve upwards with a larger fraction of multinational firms implementing organisational transplanting.

The effect of an increase in market size is shown in Figure 4. An increase in L^H shifts the $h(\theta)$-curve upward with lower θ^* and more organisational transplanting. An increase in L^F shifts the $h(\theta)$-curve downward with larger θ^* and less organisational transplanting by multinational firms.
Figure 2: THE DECISION TO TRANSPLANT THE ORGANISATION

\[h(\theta) = \pi_T(c^H_D, c^F_D) - \pi_{NT}(c^H_D, c^F_D, \theta) \]

Figure 3: MARKET COMPETITION AND MULTINATIONAL TRANSPLANTING
4 The Industry Equilibrium

We now solve for stage 1 and describe the industry equilibrium with free entry of \(n^H \) domestic local firms and \(n^F \) foreign local firms when the number of multinational firms \(m \) is fixed. We first characterise the equilibrium conditions linking the toughness of competition \(c_D^H \) and \(c_D^F \) in markets \(H \) and \(F \), as implied by the equilibrium ‘transplanting’ of multinational firms and the local market structures. Then, we solve for the free entry conditions of domestic local and foreign firms.

4.1 The Transmission of Competition between Markets

Denoting by \(N^H = m + n^H \) the total number of firms competing in market \(H \), the toughness of competition in the home market can be written as

\[
c_D^H = c_D^H(\theta^*, n_H, m) = \frac{2\gamma}{2\gamma + \frac{N^H}{2\gamma + \frac{N^H}{N^H}} \pi^H} = \frac{2\gamma + n_H c_H + m \left[\int_{0}^{\theta^*} f(\theta)(1 + \theta)c_H(z^H_\theta) d\theta + \int_{\theta^*}^{\theta^*} f(\theta)c_H(z^*\theta) d\theta \right]}{2\gamma + n_H + m}
\]

Hence, \(c_D^H(\theta^*, n_H, m) \) is an increasing function of \(\theta^* \) and the cost \(c_H^m(z^*) \). The larger the threshold \(\theta^* \), the larger the fraction of multinational firms not transplanting.
Therefore, the toughness of competition in this market becomes weaker (i.e. c_H is larger) as parent firms with a ‘no-transplant’ strategy have larger marginal costs of production as they incur an efficiency loss of θ (recall condition (8)). Similarly, parent firms with larger costs of production with the ‘transplant’ strategy $c_m^m(z^*)$ lead to weaker competition in market H and a larger value of c_H.

From Propositions 1 and 2, linking the cost function $c_m^m(z^*) = f^H(c_H^D, c_F^D)$ and the threshold $\theta^* = \theta^*(c_H^D, c_F^D)$ to the toughness of competition, we obtain a ‘fixed point’ condition that characterises the equilibrium toughness of competition c_H^D in market H:

$$c_H^D = \Phi^H(\theta^*(c_H^D, c_F^D), f^H(c_H^D, c_F^D), n_H, m)$$

This condition shows a positive relation between the toughness of competition in the home market $c_H^D = \Theta^H(c_F^D, n_H, m)$ and the toughness of competition in the foreign market c_F^D. An increase in the toughness of competition in F (lower c_F^D) influences the market conditions in H via two channels. First, according to Proposition 2, lower c_F^D leads to more multinational transplanting, which lowers the costs of parent firms (see condition (8)) increasing the degree of competition in H. Second, from Proposition 1, tougher competition in F induces, for the inframarginal multinational firms with a ‘transplant’ strategy, a move to a more centralised organisation that is closer to the optimal organisation fitting the home market. This way, the parent firms are now operating closer to their minimum costs which, in turn, increases the degree of competition in H. For both reasons, more competition in F transmits its effect to H, increasing the competition there as well.

Similarly, denoting by $N_F = m + n_F$ the total number of firms competing in market F, the toughness of competition in the foreign market can be written as

$$c_F^D(\theta^*, n_F, m) = \frac{2\gamma + N_F}{2\gamma + N_F} c_F^F = \frac{2\gamma + N_F}{2\gamma + N_F} \left[\left(\int_0^\theta f(\theta)d\theta \right) c_F^m \left(z_F^* \right) + \left(\int_\theta^{\theta^*} f(\theta)d\theta \right) c_F^m z^* \right]$$

with $c_F^D = c_F^D(\theta^*, c_F^m(z^*), n_F, m)$ as a decreasing function of θ^* and an increasing function of the cost $c_F^m(z^*)$ with the ‘fixed point’ condition of c_F^D in the foreign market F

$$c_F^D = \Phi^F(\theta^*(c_D^H, c_F^D), f^F(c_D^H, c_F^D), n_F, m)$$

leading to another positive relation between the toughness of competition in the foreign market $c_F^D = \Theta^F(c_D^H, n_F, m)$ and the toughness of competition in the home market c_H^D. Tougher competition in H now spills over to more competition in F. The channels at work
are similar to before: First, according to Proposition 2, lower c_H^D leads to less multinational transplanting, which lowers the costs of subsidiary firms in F (they are now operating with their minimum costs in the foreign market). Second, from Proposition 1, tougher competition in H induces, for the inframarginal multinational firms with a ‘transplant’ strategy, a move to a more decentralised organisation which is closer to the optimal organisation fitting the foreign market. This way, the subsidiary firms are now operating closer to their minimum costs which, in turn, increases the degree of competition in F.

Note that via their organisational choice of z^* multinational firms transmit the competitive conditions of one market to that of the other market. This way, the multinational firms’ choice of organisation acts as a transmission mechanism through which the competitive conditions in the foreign and domestic markets are linked. The connection between the two markets is at work in spite of the fact that competition is segmented, since we do not allow international trade to take place.

4.2 Free Entry

We now solve for the free entry conditions of domestic local and domestic foreign firms. The industry equilibrium can be characterised by the following set of conditions:

\[
\begin{align*}
 c_H^D &= \Theta^H(c_D^H, n_H, m) & \text{domestic market competition} \\
 c_F^D &= \Theta^F(c_D^F, n_F, m) & \text{foreign market competition} \\
 \theta^* &= \theta(c_D^H, c_D^F) & \text{equilibrium transplanting behavior} \\
 z^* &= z^*(c_D^H, c_D^F) & \text{equilibrium level of decentralisation with the ‘transplant’ strategy} \\
 \pi^H(c_H) &= \frac{L_H}{4\gamma} [c_H^D - c_H]^2 - F_H = 0 & \text{free entry local domestic firms} \\
 \pi^F(c_F) &= \frac{L_F}{4\gamma} [c_F^D - c_F]^2 - F_F = 0 & \text{free entry local foreign firms}
\end{align*}
\]

The equilibrium is obtained recursively. First, the free entry condition for local firms provides the equilibrium degrees of competition c_H^D and c_F^D in the two markets:

\[
\begin{align*}
 \frac{L_H}{4\gamma} [c_H^D - c_H]^2 &= F_H \quad \text{or} \quad c_H^D = c_H + \sqrt{\frac{4\gamma F_H}{L_H}} \\
 \frac{L_F}{4\gamma} [c_F^D - c_F]^2 &= F_F \quad \text{or} \quad c_F^D = c_F + \sqrt{\frac{4\gamma F_F}{L_F}}
\end{align*}
\]
The equilibrium level of decentralisation with the ‘transplant’ strategy \(z^* = z^* \left(c_D^H, c_D^F \right) \) is immediately deduced. Then, the equilibrium threshold \(\theta^* \) is obtained from (9), which can be rewritten as

\[
L^H \left[(1 + \theta^*) c^H_H (z^H) - c^H_H (z^*) \right] \left[c^H_D - \frac{c^H_H (z^*) + (1 + \theta^*)(z^H)}{2} \right]
= L^F \left[c^F_F (z^*) - c^F_F (z^*_p) \right] \left[c^F_D - \frac{c^F_F (z^*) + c^F_F (z^*_p)}{2} \right]
\]

(10)

From \(c_D^H = \Theta^H(c_D^F, n_H, m) \) and \(c_D^F = \Theta^F(c_D^H, n_F, m) \) we get the equilibrium numbers \(n_H \) of domestic firms, and of foreign firms, \(n_F \), which are consistent with the competitive conditions in both markets.

4.3 Market Size and Competition

We now examine how changes in the market environment affect the decision to transplant the organisation to the subsidiary firm in the host country. The comparative statics are summarised in the following proposition:

Proposition 3. In the free entry industry equilibrium with domestic and foreign firms, the following comparative statics hold.

i) Multinational firms transplant their business organisation more often when the home market becomes larger (with an increase in \(L^H \)).

ii) Multinational firms transplant their business organisation less often when the host market becomes larger (with an increase in \(L^F \)).

iii) Multinational firms transplant their business organisation more often when competition in the home market becomes weaker (with a larger fixed cost of entry \(F_H \)).

iv) Multinational firms transplant their business organisation less often when competition in the host market becomes weaker (with a larger fixed cost of entry \(F_F \)).

Proof. In the Appendix.

Intuitively, an increase in the size of the home market \(L^H \) has two effects. First, from part iii) of Proposition 2 an increase in \(L^H \) leads to more organisational transplanting. Second, an increase in \(L^H \) leads to the entry of local domestic firms and an increase in competition. From part i) of Proposition 2 an increase in competition (lower \(c_D^H \)) leads
to less organisational transplanting. It turns out that the first effect dominates the second effect, and thus an increase in L^H leads to more organisational transplanting. Similarly, an increase in L^F leads to less organisational transplanting from part iv) of Proposition 2, but it leads, via the entry of local foreign firms (lower c^F_D), to more competition and thus, from part ii) of Proposition 2, to more organisational transplanting. The first effect dominates the second, and as a result, an increase in L^F leads to less organisational transplanting.

The intuition of parts iii) and iv) of the proposition is also straightforward. An increase in the fixed costs of entry of domestic firms F_H weakens competition and, thus, from part i) of Proposition 1, encourages organisational transplanting. Similarly, an increase in the fixed costs of entry of foreign firms F_F weakens competition and leads, via part ii) of Proposition 1, to less organisational transplanting.

4.4 Reverse Transplanting

We can use Proposition 3 to illustrate how a continuous change in one parameter affects the pattern of multinational transplanting and reorganisations within global multinational corporations. To fix ideas, we consider an increase in globalisation, a continuous increase in the toughness of competition in H (a continuous decline in c^H_D). From Proposition 2, it follows that $\theta^* = \theta^*(c^H_D)$. In an industry equilibrium with free entry the threshold θ^* is a declining function of c^H_D. Figure 5 plots this threshold for the marginal multinational firm which is indifferent between the ‘transplant’ and the ‘no-transplant’ strategy. The set of multinational firms with efficiency losses of θ to the right of the downward-sloping curve $\theta^*(c^H_D)$ and a low toughness of competition (large c^H_D) adopt the ‘transplant’ strategy, with the same level of decentralisation z in the parent and subsidiary firms. The set of multinational firms with efficiency losses to the left of $\theta^*(c^H_D)$ and intense competition (small c^H_D) choose the ‘no-transplant’ strategy and disconnect the organisational routines in the parent and subsidiary firm.

To examine reorganisation within a global multinational corporation in response to changes in c^H_D we take the perspective of one specific multinational firm with an efficiency loss of θ_A. In Figure 6 we show that for a degree of competition of c^H_D above the threshold c^H_{AD}, that firm adopts the ‘transplant’ strategy, and for c^H_D below the threshold c^H_{AD}, it adopts the ‘no-transplant’ strategy. Above c^H_{AD}, the multinational firm implements the ‘transplant’ strategy with the common level of decentralisation $z^* (c^H_D)$ that satisfies the FOC (6). This level lies in the interval $z^P_H \leq z^* (c^H_D) \leq z^F_p$. As competition in H increases (and c^H_D declines), the subsidiary firm’s profits take a larger weight and $z^* (c^H_D)$ increases and becomes closer to z^F_p so as to better fit the host market conditions. Below c^H_{AD}, the multinational firm
adopts the ‘no-transplant’ strategy with the parent firm’s level of decentralisation of z^H_p and the subsidiary firm’s z^F_p.

Figure 5: MULTINATIONAL TRANSPLANTATION AND HOME MARKET COMPETITION

Figure 6: MULTINATIONAL TRANSPLANTATION AND HOME MARKET COMPETITION
Note that a change in c^H_D induces an extensive and an intensive margin of reorganisation. On the extensive margin, a decline in c^H_D increases the threshold θ^* determining which multinational firms adopt the ‘no-transplant’ strategy. On the intensive margin, a decline in c^H_D affects the level of decentralisation of the inframarginal multinational firm which adopts a ‘transplant’ strategy. For this multinational firm, a smaller c^H_D shifts the optimal $z^* (c^H_D)$ of the whole multinational corporation towards an organisational pattern that is optimally adjusted to the subsidiary firm’s market conditions. This process can be seen as some kind of ‘reverse transplanting’, in which the parent firm’s organisation is modified to converge towards the optimal organisation of the subsidiary firm. This convergence process goes on until the multinational firm adopts the ‘no-transplant’ strategy when c^H_D crosses the threshold c^H_{AD}. A major reorganisation in the multinational corporation follows when the parent’s and the subsidiary’s organisations become disconnected.

4.5 An Increase in Training Costs of Managers

The organisation of multinational firms will also respond to changes in the training costs of managers. The comparative statics for changes in the training costs of managers in country H and F are given in the following proposition.

Proposition 4. In an industry equilibrium with free entry of domestic and foreign firms, multinational firms will transplant their organisation less when the training costs in the home market a^H_p increase and they will transplant more when the training costs in the host market a^H_p increase. This holds if $(1 + \theta^*) z^H_p < z^*.$

Proof. In the Appendix.

Intuitively, larger training costs a^H_p in H affect the profits of a multinational firm through two channels. First, an increase in a^H_p leads to larger marginal production costs of the parent firm $c^m_H(z^*)$ and $(1 + \theta) c^H_H(z^H_p)$ under both forms of organisation. Marginal costs increase less when the parent firm is more centralised because the divisional manager has to be trained less. Parent firms which do not transplant their organisation are more centralised (i.e. $z^* > z^H_p$). Therefore, the marginal costs are unambiguously lower when the firm does not transplant its organisation when $z^* > (1 + \theta) z^H_p$. This discourages transplanting the organisation when a^H_p increases.

Second, an increase in a^H_p translates into lower profits in the parent firm. The smaller the output of the parent firm, the less its profits decline. The output of the parent firm will
be smaller when it does not transplant its organisation, because the parent firm incurs a
loss in efficiency by having two organisational routines. As a consequence, profits are less
reduced when the firm does not transplant its organisation. This discourages transplanting
the organisation when \(a_p^H \) increases.

Larger training costs \(a_p^F \) in \(F \) affect the profits of the multinational firm through two
channels. First, an increase in \(a_p^F \) leads to larger marginal costs of the subsidiary firm
\(c_F^m(z^*) \) and \(c_F^m(z_p^F) \) with either form of organisation. The marginal costs increase less when
the subsidiary firm is more centralised because subsidiary managers have to be trained
less. Subsidiary firms with transplanted organisations are more centralised (i.e. \(z^* < z_p^F \)). Hence, marginal costs are lower (and profits are less reduced) when the multinational
firm transplants its organisation. This encourages transplanting the organisation when \(a_p^F \)
increases.

Second, an increase in \(a_p^F \) translates into lower profits in the subsidiary firm. The lower
the output of the subsidiary firm, the less the profits decline. The output of the subsidiary
firm will be smaller when the organisation is transplanted to the subsidiary firm. Therefore,
the multinational firm will prefer to shift to the ‘transplant’ strategy when \(a_p^F \) increases.

4.6 An Increase in Communication Costs

Finally, we consider how changes in the costs of communications \(\delta \) affect the strategy to
transplant the organisation to the subsidiary firm in the host country. We summarise the
findings in the following proposition.

Proposition 5. An increase in communication costs between the headquarters and the
subsidiary firm is a priori ambiguous on the decision to transplant the organisation. When
\(z_p^F \) is close to 1 and/or \(c_F^m(z^*) \) is close to \(c_F^m(z_p^F) \), a larger value of \(\delta \) leads to less
multinational transplanting in the free entry industry equilibrium.

Proof. In the appendix. \(\square \)

Intuitively, an increase in communication costs affects the profits of the multinational
firm via two channels. First, larger communication costs increase the cost of production
of the subsidiary firms \(c_F^m(z^*) \) and \(c_F^m(z_p^F) \) under both forms of organisation. The more
centralised the subsidiary firm is, the more the production costs increase, since it needs to
ask for more help from the headquarters. Subsidiary firms with transplanted organisations
are more centralised (i.e. $z^* < z_p^F$). Hence, the marginal costs are larger (and profits are smaller) when the multinational firm transplants its organisation. This discourages transplanting the organisation when δ increases. Second, an increase in δ translates into lower profits in the subsidiary firm. The lower the output of the subsidiary firm, the less the profits decline. The output of the subsidiary firm will be smaller when the organisation is transplanted to the subsidiary firm (as the firm does not adjust optimally to the host market conditions). Therefore, the multinational firm will prefer to shift to the ‘transplant’ strategy when δ increases. Overall, the effect of δ on profits is a priori ambiguous. When the subsidiary firm is very decentralised, then with the strategy of ‘no-transplant’ (i.e. z_p^F close to 1) and/or if the cost increase in the subsidiary firm under the ‘transplant’ strategy is not too large (i.e. $c_m^F(z^*)$ close to $c_m^F(z_p^F)$), the first effect on profits dominates the second and the multinational firm prefers not to transplant its organisation when δ increases.

5 Empirical Evidence

In this section, we confront the predictions of our theory with original data for 660 multinational firms in Austria and Germany with 2200 affiliate firms in Eastern Europe and the former Soviet Union. We first describe the data we collected from a survey of 660 multinational firms with 2200 affiliate firms in Eastern Europe. We then derive the predictions from the theory we want to test. Here, we proceed in three steps. First, we examine how the decision to transplant its organisational form is influenced by a multinational’s corporate culture, communication costs, and technology. Second, we analyse how a multinational firm’s decision to transplant its organisational form is affected by market size, competition, and the training costs of managers in the host and home countries. Third, we investigate the joint decision of whether to transplant or not and the level of decentralisation of those multinational firms which decide to transplant their organisational form.

5.1 The Data

We conducted a survey of 660 multinational firms in Austria and Germany with 2200 of their affiliate firms in Eastern Europe, including Russia, the Ukraine, and other former Soviet Republics in the period 1990–2001. Due to the length of the questionnaire, we personally visited the firms in Austria and Germany, or conducted the interviews by phone. The data are a full population survey of multinational firms in Austria and Germany investing in
Eastern Europe and the former Soviet Union. Since foreign investment activity in Eastern Europe started only with the fall of communism in 1990 (under central planning, foreign ownership was prohibited), we were able to obtain 80 percent of German foreign investment and 100 percent of Austrian foreign investment in Eastern Europe during this period as well as collect detailed data on the internal organisation of these multinational firms and their human resource policies. The firms included in the sample are global corporations with at least two subsidiaries outside of Austria, Germany, and Eastern Europe. In 1998–1999, about 90 percent of total outgoing foreign direct investment in Austria was reoriented to Eastern Europe, while in Germany, Eastern Europe accounted for only about 4 to 5 percent of total outgoing foreign investment. This explains why the sample consists of relatively more Austrian firms even though Austria is much smaller than Germany in terms of population.

Measuring Organisation, Communication, and Technology

The dataset is unique not only because of its scope but also because of its detailed information about the internal organisation of the multinational firms in general and their corporate culture in particular. The data include matched parent and affiliate information on the internal organisation and the multinationals’ human resource policies. As far as we know, it is the only existing dataset suitable for testing our theory.

Measuring Transplantation We measure the transplantation of the parent firm’s organisational form to the affiliate firm by asking the CEO at the headquarters of the corporation about the organisational form of the parent firm: “Who decides in your company about the following corporate decisions listed in Table 7 in Appendix B? Please rank between 1, taken at headquarters, and 5, taken at the divisional level.” We also asked, regarding the organisational form of the affiliate firm, ‘Who decides in your company about the following decisions listed in Table 7 of the Appendix? Please rank between 1, taken at the headquarters of the parent firm, and 5, taken by the manager of the affiliate firm in the host country.’ The 13 corporate decisions are, decisions on acquisitions, finances, new strategy, wage increases, R&D expenditures, budget, transfer and product prices, introducing a new product, changing a supplier, hiring two and 20 new workers, respectively, as well as hiring a new secretary. Responses ranged between 5 hierarchical ranks, with 1 as a centralised decision, taken entirely at headquarters, and 5 as a decentralised decision,

10 For a detailed overview of all the variables and their descriptive statistics, see Tables 8 and 9 of the Data Appendix B.
taken at the divisional/affiliate level (for a full listing of the corporate decisions and their hierarchical rank in the affiliate and parent firms, see Table 7 of Appendix B).

Based on the information of the hierarchical rank of corporate decisions in the parent and affiliate firms, we constructed our measure of transplantation of the organisational form from parent firms to foreign affiliate firms. We employ three measures, which vary by the tightness of when the organisation is considered to be transplanted. The dummy variable full transplantation indicates whether or not the organisational form of the parent firm is fully transplanted to the subsidiary. It takes the value of one if each of the 13 corporate decisions have the same hierarchical rank in both parent and subsidiary firms. The dummy variable close-to-full transplantation takes the value 1 if the hierarchical rank is the same for each corporate decision or if one of the decisions differs in hierarchical rank between parent and subsidiary firms. Finally, the dummy variable partial transplantation takes the value 1 if the hierarchical rank is the same for each corporate decision with up to two exceptions.

Table 7 of Appendix B shows the percentages of affiliate firms in which a particular corporate decision is taken at the same hierarchical level as in the parent firm. It is interesting to note that the most centralised and the most decentralised corporate decisions appear to be transplanted most often to affiliate firms. The very centralised decision over acquisitions and the very decentralised decision on hiring a secretary are transplanted to more than 70 percent of the affiliate firms, while the decisions on finances and R&D are least often transplanted to the affiliate firm. Only in about half of the affiliate firms are these two decisions taken at the same hierarchical level in the affiliate as in the parent firm.

The Level of Decentralisation We use the two survey questions on the hierarchical level of corporate decisions in affiliate and parent firms to construct an overall measure of the level of decentralisation of the decision making process in both the parent and the affiliate firm. We calculate simple means from the available scores of the 13 decisions in the parent and affiliate firms and call them the decentralisation of parent firm and the decentralisation of affiliate firm. Table 7 of Appendix B shows that the most centralised decision is the decision on acquisitions, with a mean ranking of 1.34 and 1.41 for parent and subsidiary firms, respectively, followed by the decision on a new strategy (with mean rankings of 1.90, respectively, 1.88). Not surprisingly, the most decentralised decisions tend to be the decision to hire a secretary (mean rankings of 4.15 and 4.65) and the decision to hire two new workers, whereas the decision on R&D and the decision to introduce a new product tend to be taken cooperatively between headquarters and divisional/subsidiary managers in the host country (with respective mean rankings of 2.58 and 2.80). It is interesting to
note that affiliate firms tend to be more decentralised than parent firms in Germany and Austria.

We calculate a simple average of the decentralisation of parent firm and decentralisation of affiliate firm and refer to it as the decentralisation of multinational for those multinational firms which decide to transplant their organisational form. We distinguish three versions of the variable, depending on whether the ‘transplant’ strategy refers to full transplantation, close-to-full transplantation, or partial transplantation.

Other Measures of Corporate Culture

Human Resource Policies Our survey includes further information on the corporate culture of the multinational firms. The variable incentive salary in parent firm is a dummy variable that takes the value 1 if a parent firm has a human resource policy in place to incentivise its employees for performance through performance-based wage increases. Such performance-based pay increases are relatively rare, being in place in only 14% of the parent firms (see Tables 8 and 9 of Appendix B). We use this variable to proxy for the cost of a change in the organisational form. The idea is that firms with explicit human resource policies are likely to have a stronger corporate culture, which is supposed to be more costly to change.

Communication Costs As a proxy for communication costs, we use the variable distance between parent and subsidiary firms, which is defined by the geographic distance between the capitals of the countries where the parent firm and the subsidiary firm are located. Distance is supposed to capture not only the costs of face-to-face communication but also cultural differences between the parent firms and the host regions. The further away the foreign affiliate firm is from the headquarters firm, the more costly is communication between them. The average distance between parent and affiliate firms is over 900 kilometres (see Tables 8 and 9 of Appendix B).

Technology In our survey we also asked the parent firms to provide us with information about the nature of the technology transferred to their subsidiary firms. The dummy technology is innovative takes the value 1 if the technology is new, the dummy technology is established takes the value 1 if the technology is relatively established, and the dummy technology is outdated refers to a fully established or even outdated technology. In most cases, the transferred technology is either established (60%) or outdated (32%).
Finally, the size of the multinational corporation is measured by the number of employees as the size of parent firm and the size of affiliate firm. As expected, parent firms are usually much larger than affiliate firms: the average number of employees in the parent firms is 7000, while it is only around 350 for the affiliate firms.

Measuring the Size of the Host and Home Markets To measure the size of a market, we use the population and the GDP of a country obtained from *World Development Indicators* [WorldBank (2011)] and denote the variables by population of host (or home) country and GDP of host (or home) country, respectively. The largest host country in terms of both GDP and population is Russia, while the smallest host countries are Estonia and Slovenia (in terms of population) and Tadjikistan and Moldavia (in terms of GDP). Our parent firms are located either in Austria or Germany, of which Germany is the larger country (around 10 times larger than Austria in terms of both population and GDP). Alternatively, we calculate relative measures of the host country market size with respect to the home market size as the population ratio (host/home) and the GDP ratio (host/home).

Measuring Market Competition We use several data sources to proxy for product market competition in the home and host markets. First, we use OECD data on the activity of multinational firms [OECD (2012)] and calculate the share of multinationals as the ratio of the number of multinational firms with inward FDI activity to the total number of firms in a given market (the latter is obtained from [OECD (2009)]). The measure is calculated for the home and host markets at the two-digit ISIC industry level.

Second, we obtain from our firm survey two subjective firm-level measures of competition as perceived by the parent and subsidiary firms. They are dummy variables indicating, for each parent and subsidiary firm, whether the firm faces many domestic competitors and many world competitors rather than few competitors. Of the parent firms, 73 percent indicate that they face many world competitors as compared to 31 percent of the subsidiary firms. Therefore, many world competitors rather than many domestic competitors is our preferred subjective measure of competition for the parent firms.

Finally, we use the AMADEUS database from [BureauVanDijk (2005)] to calculate the sectoral Lerner index based on a large number of firms for the home and host countries of the multinational firm at the three-digit ISIC industry level. The Lerner index is defined as \((1 - \text{average profits/sales})\), where the average is taken, first, across all firms available in a three-digit industry in a specific country and, second, over the years 1996 to 2000 (see Tables 8 and 9 of the Data Appendix B for a more formal definition).
Training Costs of Managers We employ two measures to proxy for the training costs of managers in the home and the host markets. The first proxy, referred to as skill endowment, is the share of the population with secondary and higher education in the country, and is constructed from *OECD Education at a Glance Indicators* (OECD, 2002). The larger the share, the higher the skill endowment in a country, and thus the lower the training costs of its managers. The second measure, the wage skill premium, is calculated as the ratio of labour compensation per hour of the medium- and the highly-skilled labour force to average labour compensation per hour. It is available at the two-digit ISIC industry level and obtained from the EU KLEMS database (EUKLEMS, 2008). The larger the premium, the more costly it is to train managers.

5.2 Predictions and Empirical Results

Corporate Culture, Distance, and Technology

We start by examining how a multinational firm’s corporate culture, distance, and technology affect its decision to transplant its organisational form to other countries. From Propositions 4 and 5 we derive the following predictions.

Prediction 1: A multinational firm with a corporate culture (which makes operating with two organisational routines more costly) is more likely to transplant its business model to the subsidiary firm in the host country.

Prediction 2: An increase in the distance between the multinational headquarters and the affiliate firm makes it less likely that the organisational form is transplanted. This prediction holds when the subsidiary firm is very decentralised (under the strategy of ‘no-transplant’) and/or the level of decentralisation between the parent and affiliate firm is sufficiently close.

Prediction 3: A more innovative technology increases the training costs of managers in the host country, which makes it more likely that the organisational form is transplanted to the affiliate firm.

To expose Predictions 1 to 3 to the data, we consider the following econometric model of the probability of transplanting the organisational form to the affiliate firm in the host country.
\[
\text{Prob}({\text{trans}}_{ijk}) = \partial_1 + \partial_2 \text{inc}_{ijk} + \partial_3 \text{dist}_{ijk} + \partial_4 \text{tech}_{ijk} + \partial_5 w'_{ijk} + \nu_{ijk}
\]

Here, \(\text{trans}_{ijk}\) is a dummy variable taking the value 1 for a multinational firm which has close-to-fully transplanted its organisational form to its affiliate firm, i.e. when all corporate decisions or all corporate decisions except one have the same hierarchical rank in the affiliate firm as in the parent firm, and 0 otherwise. \(i\) denotes the firm, \(j\) denotes the home country, and \(k\) denotes the host country. \(\text{inc}_{ijk}\) is a dummy variable indicating the cost of having two organisational routines. It is captured by whether the parent multinational firm has an explicit human resource policy in place. \(\text{dist}_{ijk}\) measures the communication costs between the parent and affiliate firm and is given by the geographic distance between the parent and affiliate firm. \(\text{tech}_{ijk}\) indicates that the technology transferred to the affiliate firm is innovative rather than established or outdated. \(w'_{ijk}\) is a vector of controls and \(\nu_{ijk}\) is an error term. In light of Predictions 1, 2, and 3, we test the hypotheses \(\partial_2 > 0\) and \(\partial_3 < 0\), \(\partial_4 > 0\).

Our findings are given in Table 2, which presents probit maximum likelihood estimates of Equation 11. All \(p\)-values are based on robust standard errors, which allows for heteroskedasticity at the firm level. In all regressions, we also include two additional firm-level controls to avoid omitted variable bias. These are the log of the number of employees in the parent and affiliate firms as a measure of firm size. To test the sensitivity of our results to the way the survey was conducted, we also include two survey controls in columns (4)–(6). The first dummy indicates whether the respondent to the survey was a top executive, while the second dummy takes the value 1 if the respondent was a middle (i.e. divisional) manager. To further check the robustness, we also include a set of host and home country dummies (columns (5) and (6)) as well as industry dummies (column (6)).

The coefficient on incentive salary in parent firm is, as predicted by the theory, positive and highly significant at conventional levels, suggesting that firms with larger costs of having two different organisational routines in the affiliate and parent firm tend to transplant their business model significantly more often. incentive salary in parent firm captures whether or not the multinational firm incentivises its workers by having performance-based wages in place. We assume that multinational firms with performance-based wages have an explicit human resource policy and a stronger corporate culture. To get a sense of the economic importance of each of the regressors, we report the marginal effects in the last column of Table 2. Multinational firms which use incentive wages to reward performance are 18 percentage points more likely to transplant their organisational form.

Columns 2 to 6 test Prediction 2. The estimated coefficient on distance is negative and
significant, suggesting that when the affiliate firm’s distance to the parent firm doubles, the probability of transplanting decreases by 7.4 percentage points. Finally, in columns 3 to 6 we test Prediction 3. The dummy variables technology is innovative and established rather than outdated are both positive and significant. The probability of transplanting increases the most (by 26.8 percentage points) when the technology transferred to the subsidiary firm is innovative, and by 5 percentage points when the technology is established rather than outdated.

Table 2: DETERMINANTS OF TRANSPLANTATION: CORPORATE CULTURE, COMMUNICATION AND TECHNOLOGY

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>Marginal effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close-to-full transplantation</td>
<td>0.73***</td>
<td>0.78***</td>
<td>0.64***</td>
<td>0.47***</td>
<td>0.44***</td>
<td>0.60***</td>
<td>18.3</td>
</tr>
<tr>
<td>Human resource policy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incentive salary in parent firm</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>18.3</td>
</tr>
<tr>
<td>Communication costs</td>
<td>-0.14***</td>
<td>-0.10*</td>
<td>-0.15***</td>
<td>-0.26***</td>
<td>-0.30***</td>
<td>-7.4</td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology is established</td>
<td>0.19*</td>
<td>0.21**</td>
<td>0.25**</td>
<td>0.20*</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology is innovative</td>
<td>0.77***</td>
<td>0.95***</td>
<td>0.99***</td>
<td>0.83***</td>
<td>26.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>1,155</td>
<td>1,155</td>
<td>1,031</td>
<td>1,031</td>
<td>1,011</td>
<td>1,006</td>
<td></td>
</tr>
<tr>
<td>Pseudo R^2</td>
<td>0.038</td>
<td>0.045</td>
<td>0.051</td>
<td>0.097</td>
<td>0.117</td>
<td>0.169</td>
<td></td>
</tr>
</tbody>
</table>

Notes: * significant at 10%, ** significant at 5%, ***significant at 1%. Probit estimates with robust standard errors. The p-values are reported in parentheses. Marginal effects are based on column (6) and are calculated at mean for continuous variables and for discrete changes from zero to one for dummy variables (both in percentage points). The dependent variable close-to-full transplantation is a dummy that takes the value 1 if each corporate decision obtained the same hierarchical rank for the parent firm as for the subsidiary firm or if only one corporate decision differs. Incentive salary in parent firm is a dummy that takes the value 1 if the parent firm incentivises performance through salary increases. Distance is the distance between parent and subsidiary firm in km. Technology is established and technology is innovative are dummy variables that indicate the nature of the technology transferred to a subsidiary firm, while technology is outdated is the omitted category. Firm size controls refer to the log of the numbers of employees in the parent and subsidiary firms. Survey controls include two dummy variables, which indicate whether the survey respondent is an executive or a middle (i.e., division) manager respectively. Home and host country dummies are dummies for the location of the parent and subsidiary firm, respectively. Finally, industry dummies are one-digit industry dummies for the subsidiary firm based on ISIC Rev. 3. See also Table in Appendix for more detailed definitions of the variables.

Market Size

Next, we study the relation between the probability of transplanting the organisational
form and the market size which is derived from Proposition 3.

Prediction 4: (a) A multinational firm is less likely to transplant its business model to an affiliate firm in a host country with a larger market size, (b) while it is more likely to transplant from a larger home market.

To test Prediction 4, we proceed with the following econometric specification.

\[
\text{Prob}(\text{trans}_{ijk}) = \theta_1 + \theta_2 \nabla'_{ijk} + \theta_3 \log \text{population}_k + \theta_4 \log \text{population}_j + \theta_5 w'_{ijk} + \nu_{ijk} \tag{12}
\]

Here, \(\nabla'_{ijk} \) is a vector of the organisational variables we have included to test Predictions 1–3, while \(\log \text{population}_k \) and \(\log \text{population}_j \) are the logs of the population in the host and home countries, respectively. In light of Prediction 4, we test for \(\theta_3 < 0 \) and \(\theta_4 > 0 \).

We report the findings in Table 3. As predicted by the theory, a larger home market in terms of population increases the probability of transplanting (column 1). When the population of the home market doubles, the probability of transplanting increases by approximately 4.8 percentage points (see the last column for the marginal effects). In line with the theory, the coefficient of the size of the host markets is negative but the effect is not significant. The results are similar when the size of the market is measured by GDP instead of population (column 2).

For robustness, we use alternative measures of market size by considering the relative rather than the absolute size of the host market. First, in column (3), we consider the ratio of population in the host country to that in the home country. The relation is negative and significant, suggesting that if the log population ratio increases by 1, the probability of transplanting the organisational form declines by 2.7 percentage points. In our data, this means that if a German multinational firm moves its affiliate from the Ukraine (with a population ratio of 0.6) to Russia (with a population ratio of 1.8), the probability of transplanting decreases by around 2.9 percentage points. Alternatively, if an Austrian multinational firm moves its affiliate from Bulgaria (with a population ratio of 1) to Romania (with a population ratio of 2.8), the probability of transplanting declines by around 2.6 percentage points. In column 4 we replace the population ratio by the GDP ratio as an alternative measure for market size. The findings are similar.

In columns (5)–(7), we test the robustness of the results to the inclusion of survey controls (columns 5–7) and industry dummies (column 6–7). The size of the home market
remains significant at 10% in column 6. However, the significance is weakened to 15% when firm size controls are included (column 7). The reason is that these controls (measuring the number of employees in the parent and subsidiary firms) are positively correlated with the size of the market. For instance, the correlation coefficient between the (log) population of the home market and the (log) parent firm size is 0.28. Finally, note that we do not include any country dummies as they would be collinear with our measures of market size.

Market Competition

We proceed to examine how market competition influences a multinational firm’s decision to transplant its organisational form, as derived in Proposition 3.

Prediction 5: (a) A multinational firm is more likely to transplant its business model to its affiliate firm facing tougher competition in its host market, (b) while it is less likely to transplant from a more competitive home market.

To test Prediction 5 we add to Equation 12 two variables, measuring competition in the home and host markets. The results are reported in Table 4. We employ several measures of market competition. First, we use the share of multinational firms in the total number of firms in a sector in column (1). According to the theory, a larger share of multinational competitors present in the host or home markets, increases the toughness of competition since the share of low cost firms in the market is larger. As predicted, the coefficient of share of multinationals, home market is negative and significant, suggesting that multinational firms faced with a larger number of multinational competitors in the home market transplant significantly less frequently. When the share of multinational exposure in the home market increases by 10 percentage points, the probability of transplanting declines by 11 percentage points. The coefficient of the share of multinationals, host market is positive and significant, suggesting that multinational firms faced with a larger number of multinational competitors in the host market transplant their organisational mode significantly more frequently. When the share of multinational exposure in the host market increases by 10 percentage points, the probability of transplanting increases by 9 percentage points.

Second, we test the robustness of the results using alternative measures of competition. In column (2), we show the results with firm specific measures of competition. As predicted by the theory, multinational firms transplant their business model significantly more often when they are faced with many competitors in their host markets, but they transplant their organisational form with lower probability when they are facing many competitors in their
<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>Marginal effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close-to-full transplantation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log (population host country)</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.69)</td>
<td>(0.64)</td>
<td>(0.69)</td>
<td>(0.83)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log (population home country)</td>
<td>0.16***</td>
<td>0.08</td>
<td>0.08*</td>
<td>0.08</td>
<td>4.8</td>
<td></td>
<td></td>
<td>(column 1)</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.12)</td>
<td>(0.10)</td>
<td>(0.14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log (GDP host country)</td>
<td>-0.02</td>
<td>-0.09***</td>
<td>-2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.63)</td>
<td>(0.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log (GDP home country)</td>
<td>0.17***</td>
<td>0.08</td>
<td>0.09***</td>
<td>0.10***</td>
<td>5.0</td>
<td></td>
<td></td>
<td>(column 2)</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log (population ratio)</td>
<td>-0.09***</td>
<td>-2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(column 3)</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log (GDP ratio)</td>
<td>-0.10***</td>
<td>-2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(column 4)</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>1,140</td>
<td>1,140</td>
<td>1,140</td>
<td>1,140</td>
<td>1,140</td>
<td>1,135</td>
<td>1,026</td>
<td></td>
</tr>
<tr>
<td>Pseudo R²</td>
<td>0.063</td>
<td>0.063</td>
<td>0.059</td>
<td>0.059</td>
<td>0.095</td>
<td>0.138</td>
<td>0.151</td>
<td></td>
</tr>
</tbody>
</table>

HR policy, distance, technology (4) | Y | Y | Y | Y | Y | Y | Y |
Survey controls (2) | N | N | N | N | Y | Y | Y |
Industry dummies (8) | N | N | N | N | N | Y | Y |
Firm size controls (2) | N | N | N | N | N | N | Y |

Notes: * significant at 10%, ** significant at 5%, *** significant at 1%. Probit estimates with robust standard errors. The p-values are reported in parentheses. Marginal effects calculated at mean (in percentage points, the columns with corresponding specification are reported in parentheses, only significant effects are reported). The dependent variable close-to-full transplantation is a dummy that takes the value 1 if each corporate decision obtained the same hierarchical rank for the parent firm as for the subsidiary firm or if only one corporate decision differs. GDP and population ratio are the ratios of the GDP/population in the host to the GDP/population of the home country. HR policy, distance and technology refer to the four explanatory variables, incentive salary, Log(distance), technology is established and technology is innovative, used in Table 2. Survey controls include two dummy variables, which indicate whether the survey respondent is an executive or a middle (i.e. division) manager. Industry dummies are one-digit industry dummies for the subsidiary firm based on ISIC Rev. 3. Firm size controls refer to the log of the number of employees in the parent and subsidiary firms. See also Table 3 in Appendix B for more detailed definitions of the variables.
home market. Competition in host and home markets is an economically important driver of organisational transfer to the host economies of Eastern Europe. When competition in the host country is tough (many competitors) rather than weak (few competitors), the probability of transplanting increases by 20 percentage points, while having many competitors in the home market lowers this probability by around 15 percentage points. In addition, in column (3) we replace the firm-level measures of competition by the Lerner index at the sectoral 3-digit level. The results are robust for the home market Lerner but not for the host market Lerner, as the sign of the coefficient changes.

Finally, we examine in columns 4–6 the robustness of the results to the inclusion of various controls, including survey controls, home and host country dummies, as well as industry dummies. Compared to Table 2, the number of host country dummies is limited, as the variable share of multinationals is available only for 8 host countries in our sample (Bulgaria, the Czech Republic, Estonia, Hungary, Latvia, Poland, Slovakia and Slovenia).

The industry dummies are included at the one-digit level only, so that the effects of the sectoral variable share of multinationals (computed at the two-digit level) can still be estimated.

Training Costs of Managers

Finally, we analyse how the training costs of managers in the home and host countries affect the decision to transplant the mode of organisation, as derived in Proposition 4.

Prediction 6: (a) A multinational firm is less likely to transplant its organisational mode when the training costs of managers in the home market increase, and (b) it is more likely to transplant when the training costs of managers in the host market increase.

To test Prediction 6 we add to Equation 12 two proxies, for the training costs of managers in the home and host markets. In column (1) of Table 5, we include the human capital endowments in the home and host countries. When a country’s human capital endowment increases, the more educated the potential divisional managers are, and so the easier it is for them to learn more complex tasks, and therefore the lower are the costs that firms are expected to pay to train them. Therefore, we proxy for the training costs of managers by the share of the working population with tertiary and secondary education in the country. As expected by the theory, when the skill endowment in the host country increases by 10

\[\text{skill endowment}_{i} = \text{share of working population with tertiary and secondary education in country } i \]

\[+ \text{country fixed effects} \]

\[+ \text{industry fixed effects} \]

\[+ \text{error terms} \]

\[\text{home market. Competition in host and home markets is an economically important driver of organisational transfer to the host economies of Eastern Europe. When competition in the host country is tough (many competitors) rather than weak (few competitors), the probability of transplanting increases by 20 percentage points, while having many competitors in the home market lowers this probability by around 15 percentage points. In addition, in column (3) we replace the firm-level measures of competition by the Lerner index at the sectoral 3-digit level. The results are robust for the home market Lerner but not for the host market Lerner, as the sign of the coefficient changes.} \]

\[\text{Finally, we examine in columns 4–6 the robustness of the results to the inclusion of various controls, including survey controls, home and host country dummies, as well as industry dummies. Compared to Table 2, the number of host country dummies is limited, as the variable share of multinationals is available only for 8 host countries in our sample (Bulgaria, the Czech Republic, Estonia, Hungary, Latvia, Poland, Slovakia and Slovenia). The industry dummies are included at the one-digit level only, so that the effects of the sectoral variable share of multinationals (computed at the two-digit level) can still be estimated.} \]

\[\text{Training Costs of Managers} \]

\[\text{Finally, we analyse how the training costs of managers in the home and host countries affect the decision to transplant the mode of organisation, as derived in Proposition 4.} \]

\[\text{Prediction 6: (a) A multinational firm is less likely to transplant its organisational mode when the training costs of managers in the home market increase, and (b) it is more likely to transplant when the training costs of managers in the host market increase.} \]

\[\text{To test Prediction 6 we add to Equation 12 two proxies, for the training costs of managers in the home and host markets. In column (1) of Table 5, we include the human capital endowments in the home and host countries. When a country’s human capital endowment increases, the more educated the potential divisional managers are, and so the easier it is for them to learn more complex tasks, and therefore the lower are the costs that firms are expected to pay to train them. Therefore, we proxy for the training costs of managers by the share of the working population with tertiary and secondary education in the country. As expected by the theory, when the skill endowment in the host country increases by 10} \]

\[\text{\footnotemark[11]} \]
Table 4: DETERMINANTS OF TRANSPLANTATION: MARKET COMPETITION

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>Marginal effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close-to-full transplantation</td>
<td>0.03**</td>
<td>0.03**</td>
<td>0.04**</td>
<td>0.04**</td>
<td>0.9</td>
<td>(column 6)</td>
<td></td>
</tr>
<tr>
<td>Share of multinationals, host market</td>
<td>(0.03)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.03)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share of multinationals, home market</td>
<td>-0.04**</td>
<td>-0.05***</td>
<td>-0.05***</td>
<td>-0.04**</td>
<td>-1.1</td>
<td>(column 6)</td>
<td></td>
</tr>
<tr>
<td>Many domestic competitors, subsidiary firm</td>
<td>0.76***</td>
<td>(0.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Many world competitors, parent firm</td>
<td>-0.52***</td>
<td>(0.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host market Lerner</td>
<td>0.03**</td>
<td>0.8</td>
<td>(column 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home market Lerner</td>
<td>0.03***</td>
<td>0.9</td>
<td>(column 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>631</td>
<td>986</td>
<td>896</td>
<td>631</td>
<td>628</td>
<td>628</td>
<td></td>
</tr>
<tr>
<td>Pseudo R^2</td>
<td>0.0693</td>
<td>0.134</td>
<td>0.102</td>
<td>0.100</td>
<td>0.122</td>
<td>0.183</td>
<td></td>
</tr>
</tbody>
</table>

Market competition

- Share of multinationals, host market
- Share of multinationals, home market
- Many domestic competitors, subsidiary firm
- Many world competitors, parent firm
- Host market Lerner
- Home market Lerner

Notes: * significant at 10%, ** significant at 5%, *** significant at 1%. Probit estimates with robust standard errors. The p-values are reported in parentheses. Marginal effects calculated at mean for continuous variables and for discrete changes from zero to one for dummy variables (in percentage points, the columns with corresponding specification are reported in parentheses). The dependent variable close-to-full transplantation is a dummy that takes the value 1 if each corporate decision obtained the same hierarchical rank for the parent firm as for the subsidiary firm or if only one corporate decision differs. Share of multinationals is the share of multinational firms in total firms operating in the home/host market. Many domestic competitors and many world competitors (rather than few competitors) are subjective measures of market competition as perceived by the subsidiary and parent firm, respectively. Home and host market Lerner are indices of market competition calculated as $(1 – \text{average profits/sales})$ at sectoral level in a country using data from a large number of firms. Firm size controls refer to the log of the number of employees in the parent and subsidiary firms. HR policy, distance and technology refer to the four explanatory variables, incentive salary, Log(distance), technology is established and technology is innovative, used in Table 2. Market size refer to the (log of) population of host and home country used in Table 3. Survey controls include two dummy variables, which indicate whether the survey respondent is an executive or a middle (i.e. division) manager. Home and host country dummy are dummies for the location of the parent and subsidiary firm, respectively. Industry dummies are one-digit industry dummies for the subsidiary firm based on ISIC Rev. 3. See also Table 8 in Appendix B for more detailed definitions of the variables.
percentage points, the probability of transplanting decreases by 6 percentage points. The corresponding effect for the home market is, however, not significant.

Table 5: DETERMINANTS OF TRANSPLANTATION: TRAINING COSTS OF MANAGERS

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>Marginal effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close-to-full transplantation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market competition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share of multinationals, host market</td>
<td>0.05***</td>
<td>0.03**</td>
<td>0.05***</td>
<td>0.04**</td>
<td>(column 4)</td>
</tr>
<tr>
<td>Share of multinationals, home market</td>
<td>-0.05**</td>
<td>-0.04**</td>
<td>-0.06***</td>
<td>-0.06***</td>
<td>-1.4</td>
</tr>
<tr>
<td>Training costs of managers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skill endowment of host country</td>
<td>-0.03***</td>
<td>-0.03***</td>
<td>-0.02**</td>
<td>-0.6</td>
<td>(column 4)</td>
</tr>
<tr>
<td>Skill endowment of home country</td>
<td>-0.02</td>
<td>-0.06</td>
<td>-0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wage skill premium, host market</td>
<td>0.06***</td>
<td>(0.00)</td>
<td></td>
<td></td>
<td>1.7</td>
</tr>
<tr>
<td>Wage skill premium, home market</td>
<td>0.02</td>
<td>(0.00)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>547</td>
<td>594</td>
<td>547</td>
<td>547</td>
<td></td>
</tr>
<tr>
<td>Pseudo R^2</td>
<td>0.088</td>
<td>0.086</td>
<td>0.120</td>
<td>0.185</td>
<td></td>
</tr>
<tr>
<td>Firm size controls (2)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>HR policy, distance, technology (4)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Survey controls (2)</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Industry dummies (7)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

Notes: * significant at 10%, ** significant at 5%, ***significant at 1%. Probit estimates with robust standard errors. The p-values are reported in parentheses. Marginal effects calculated at mean (in percentage points, the columns with corresponding specification are reported in parentheses, only significant effects are reported). The dependent variable close-to-full transplantation is a dummy that takes the value 1 if each corporate decision obtained the same hierarchical rank for the parent firm as for the subsidiary firm or if only one corporate decision differs. Share of multinationals is the share of multinational firms in total firms operating in the home/host market. Skill endowment is the share of population with secondary and higher education in home/host country. Wage skill premium is the ratio of labour compensation of medium- and highly-skilled labour force per hour to average labour compensation per hour calculated at two-digit industry level. Firm size controls refer to the log of the number of employees in the parent and subsidiary firms. HR policy, distance and technology refer to the four explanatory variables, incentive salary, \log (distance), technology is established and technology is innovative, used in Table 2. Survey controls include two dummy variables, which indicate whether the survey respondent is an executive or a middle (i.e. division) manager. Industry dummies are one-digit industry dummies for the subsidiary firm based on ISIC Rev. 3. See also Table 3 in Appendix B for more detailed definitions of the variables.

We proceed to use the wages of medium- and highly-skilled workers relative to workers with primary education as an alternative measure for the training costs of managers, and refer to it as the wage skill premium (column 2). The findings are similar. An increase in the wage skill premium in the host market by 10 percentage points increases the probability of transplanting by 17 percentage points, while the wage skill premium in the home market is not significant. Further, we include survey controls in columns 3 and 4 and industry dummies in column 4. The results remain, however, similar. In all specifications of Table 5 we also report the coefficients of the two competition variables, share of multinationals.
in the home and host markets, which remain robust to the different specifications as well.

As a final robustness check of the determinants of transplantation, we present in Table 10 of Appendix B the regression results for all three measures of transplanting the mode of organisation: full transplantation, close-to-full transplantation, and partial transplantation. As explanatory variables, we include all the main determinants of transplantation discussed so far. The results are mostly robust, though some effects tend to become insignificant with the weak measure of partial transplantation.

The Joint Decision: The Level of Decentralisation

The decision to transplant the organisation and the choice of the level of decentralisation of the whole multinational corporation under the ‘transplant’ strategy are jointly determined. In Figure 6 of the theory section, we illustrated how changes in the home market conditions affect these choices. Facing weak competition, firms transplant and choose a level of \(z \) which is closer to the host market conditions \(z_p^F \). They decentralise. When competition toughens and crosses a certain threshold, the firm shifts to the ‘no-transplant’ strategy. Parent and subsidiary organisations become disconnected. We proceed to test this joint decision by determining the level of decentralisation of the whole multinational corporation in response to the competitive conditions in the home and host markets when the firm decides to transplant its organisation. From Proposition 1 we obtain the following prediction.

Prediction 6: (a) With the ‘transplant’ strategy, a multinational corporation is more decentralised when competition in the home market increases and (b) it is more centralised when competition in the host market increases.

To test the prediction, we employ the Heckman maximum likelihood model in Table 6 to jointly estimate (i) the decision to transplant the organisational mode (the selection equation) and (ii) the decision as to the level of decentralisation of the whole multinational corporation (the outcome equation) if the organisational mode is transplanted.\(^{12}\) To identify the selection equation, we exclude (log) distance from the outcome equation. The rationale for selecting this variable for exclusion is that the theory predicts a strong effect of distance on the decision to transplant but no such effect on the decision over the level of decentralisation. The joint estimation allows us to take into account the possible correlation between the error terms in the two equations.

\(^{12}\)Note that with the ‘transplant’ strategy, the level of decentralisation of the parent and subsidiary are either identical or close to identical, depending on the tightness of our measure of transplantation.
The estimated coefficients for the selection of the transplant strategy (Panel A) are similar to the results we obtained before. For the level of decentralisation (Panel B) we find that an increase in the share of multinational exposure in the host market of 10 percentage points reduces the level of decentralisation in the multinational corporation by a rank of 0.2 to 0.3 on the scale between 1 and 5 which corresponds to a reduction in the level of decentralisation of 5 to 7.5 percent.\footnote{A reduction by 0.2 corresponds to 0.2/4 = 5 percent in the possible range of the level of decentralisation between 1 and 5.} An increase in the share of multinational exposure in the home market of 10 percentage points increases the level of decentralisation of the multinational corporation by a rank of 0.3 to 0.7 which corresponds to an increase in the level of decentralisation of 7.5 to 17.5 percent. When the home market becomes less profitable due to an increase in competition, the multinational corporation adjusts its level of decentralisation to the one that fits better to the host market conditions. This way, we identify in the data a process of ‘reverse transplanting’ in which the parent firm’s organisation is modified to be closer to the optimal organisation of the subsidiary firm.
Table 6: JOINT DETERMINANTS OF TRANSPLANTATION AND DECENTRALISATION

Panel A. Selection equation with dependent variable: Transplantation

<table>
<thead>
<tr>
<th></th>
<th>Full (1)</th>
<th>Close-to-full (2)</th>
<th>Partial (3)</th>
<th>Full (4)</th>
<th>Close-to-full (5)</th>
<th>Partial (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incentive salary in parent firm</td>
<td>0.54*** (0.00)</td>
<td>0.76*** (0.00)</td>
<td>0.35** (0.02)</td>
<td>0.41** (0.02)</td>
<td>0.66*** (0.00)</td>
<td>0.22 (0.16)</td>
</tr>
<tr>
<td>Technology is innovative</td>
<td>0.59*** (0.00)</td>
<td>0.44** (0.03)</td>
<td>0.30 (0.11)</td>
<td>0.78*** (0.00)</td>
<td>0.63*** (0.00)</td>
<td>0.49*** (0.01)</td>
</tr>
<tr>
<td>Population ratio (host/home)</td>
<td>0.02 (0.66)</td>
<td>0.01 (0.89)</td>
<td>-0.05 (0.24)</td>
<td>0.06 (0.26)</td>
<td>0.04 (0.42)</td>
<td>-0.02 (0.65)</td>
</tr>
<tr>
<td>Share of multinationals, host market</td>
<td>0.04*** (0.00)</td>
<td>0.02** (0.01)</td>
<td>0.01 (0.31)</td>
<td>0.04*** (0.01)</td>
<td>0.03** (0.02)</td>
<td>0.01 (0.35)</td>
</tr>
<tr>
<td>Share of multinationals, home market</td>
<td>-0.04** (0.05)</td>
<td>-0.02 (0.25)</td>
<td>-0.01 (0.70)</td>
<td>-0.05*** (0.01)</td>
<td>-0.03* (0.09)</td>
<td>-0.02 (0.30)</td>
</tr>
<tr>
<td>Log(distance)</td>
<td>-0.32*** (0.00)</td>
<td>-0.28*** (0.10)</td>
<td>-0.11* (0.00)</td>
<td>-0.36*** (0.00)</td>
<td>-0.32*** (0.00)</td>
<td>-0.16** (0.02)</td>
</tr>
</tbody>
</table>

Panel B. Outcome equation with dependent variable: Decentralisation of multinational

<table>
<thead>
<tr>
<th></th>
<th>Full (1)</th>
<th>Close-to-full (2)</th>
<th>Partial (3)</th>
<th>Full (4)</th>
<th>Close-to-full (5)</th>
<th>Partial (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incentive salary in parent firm</td>
<td>-0.63*** (0.00)</td>
<td>-0.26* (0.09)</td>
<td>-0.30** (0.03)</td>
<td>-0.60*** (0.00)</td>
<td>-0.32** (0.02)</td>
<td>-0.29*** (0.02)</td>
</tr>
<tr>
<td>Technology is innovative</td>
<td>-0.28 (0.18)</td>
<td>-0.30* (0.08)</td>
<td>-0.37** (0.01)</td>
<td>-0.33 (0.13)</td>
<td>-0.46*** (0.00)</td>
<td>-0.46*** (0.00)</td>
</tr>
<tr>
<td>Population ratio (host/home)</td>
<td>0.06 (0.27)</td>
<td>0.02 (0.65)</td>
<td>0.03 (0.45)</td>
<td>0.07 (0.20)</td>
<td>0.03 (0.54)</td>
<td>0.02 (0.57)</td>
</tr>
<tr>
<td>Share of multinationals, host market</td>
<td>-0.03*** (0.00)</td>
<td>-0.02** (0.04)</td>
<td>-0.02*** (0.01)</td>
<td>-0.03*** (0.00)</td>
<td>-0.02** (0.02)</td>
<td>-0.02*** (0.01)</td>
</tr>
<tr>
<td>Share of multinationals, home market</td>
<td>0.07*** (0.00)</td>
<td>0.05*** (0.00)</td>
<td>0.03*** (0.00)</td>
<td>0.07*** (0.00)</td>
<td>0.04*** (0.00)</td>
<td>0.03*** (0.00)</td>
</tr>
</tbody>
</table>

Observations (selected) | 699 (94) | 699 (145) | 699 (198) | 699 (94) | 699 (145) | 699 (198) |

\(\rho \) | 0.27 | 0.54** | 0.07 | 0.23 | 0.48** | 0.14 |

Wald test of indep. eqns. \(\rho = 0 \) | (0.48) | (0.02) | (0.87) | (0.49) | (0.03) | (0.68) |

Size controls | Y Y Y Y Y Y |
Survey controls | N N N Y Y Y |

Notes: * significant at 10%, ** significant at 5%, ***significant at 1%. Heckman maximum likelihood estimates with robust standard errors. The \(p \)-values are reported in parentheses. The dependent variables in the selection equation are **full transplantation** (columns 1 and 4), **close-to-full transplantation** (columns 2 and 5) and **partial transplantation** (column 3 and 6). They indicate whether the organisational form was fully (close-to-fully or partially) transplanted from the parent firm to its subsidiary firm. The dependent variable in the outcome equation is **decentralisation of multinational**, which is the mean of decentralisation of parent and subsidiary firm with the 'transplant' strategy. **Incentive salary in parent firm** is a dummy that takes the value 1 if the parent firm incentivises performance through salary increases. **Technology is innovative** is a dummy variable that indicates the nature of the technology transferred to the subsidiary firm, while **technology is established and outdated** is the omitted category. **Population ratio** is the ratio of the population in the host to the population of the home country. **Share of multinationals** is the share of multinational firms in total firms operating in a market. **Distance** is the distance between parent and subsidiary firm in km; it is excluded from the outcome equation. The \(p \)-values are reported for Wald test for independent equations (i.e. the test that the correlation between the error terms in the selection and outcome equation denoted as \(\rho \) is 0). Size controls refer to the log of the number of employees in the parent and subsidiary firms. Survey controls include two dummy variables, which indicate whether the survey respondent is an executive or a middle (i.e. division) manager. See also Table 8 in Appendix B for more detailed definitions of the variables.
6 Conclusion

In this paper we investigate the conditions under which multinational firms transplant their business organisation to their affiliate firms in host countries. In concluding, we want to return to the puzzle we raised in the Introduction, that there is a surprisingly high proportion of multinational firms that do not transplant their mode of organisation to host countries. In our analysis we found that three factors stand out as drivers of organisational transfer to host countries. First, multinational firms with a strong corporate culture are 18 percentage points more likely to transplant their organisational form to host countries. A strong corporate culture makes it costly for a multinational firm to have two organisational routines and to choose a business model for its affiliate firms which is optimally adjusted to the host market conditions. Among Austrian and German multinational firms in our data, however, only a minority (14 percent) incur these organisational costs by having human resource policies in place incentivising their workers (which is our proxy of corporate culture).

Second, multinational firms which transfer an innovative technology to affiliate firms in the host country are 27 percentage points more likely to export their business organisational form abroad. Our estimates suggest that technology transfer and organisational transfer go hand in hand. A new technology increases the training costs of the production managers in the affiliate firms, making savings on these costs in a more centralised organisation in the affiliate firms more desirable. However, among the multinational firms in our sample, only very few (8 percent) describe the technology they transfer to host countries as innovative, while the majority of firms (60 percent) perceive the technology as established. Thus, the rarity of multinational firms with a strong corporate culture and with innovative technologies has contributed to the low frequency of transplanting the mode of organisation to the affiliate firms in Eastern Europe.

Lastly, we find that market competition is an economically important driver of organisational transfer. Multinational firms investing in host countries with tough competition are more likely to export their organisational form to these countries, while multinational investors coming from a home market with tough competition are less likely to transplant their organisation. Thus, the tougher competitive environment in rich countries due to globalisation have also contributed to the low frequency of multinational firms’ transplanting their business model.

These findings suggest that organisational transfer between countries may be promoted by targeting multinational firms with a strong corporate culture and innovative technologies.
At the same time, host countries can influence the likelihood of such organisational transfer by being more open to incoming foreign direct investment, creating a more competitive market environment in their countries. This will be particularly desirable for large host countries which are at a disadvantage for obtaining organisational transfer from their multinational investors. Whether, in fact, such policies are welfare improving to the host countries is, however, beyond the scope of this paper.

References

A Appendix: Theory

- The optimal joint organisational form with the ‘transplant’ strategy

Put \(\pi(c^H_D, c^F_D, z) = \frac{L^H}{2\gamma} [c^H_D - c^m_H(z)]^2 + \frac{L^F}{2\gamma} [c^F_D - c^m_F(z)]^2 \). Then we know that the first order condition for this joint organisational form \(z \) is simply given from

\[
\frac{\partial \pi(c^H_D, c^F_D, z)}{\partial z} = -\frac{L^H}{2\gamma} [c^H_D - c^m_H(z)] \frac{\partial c^m_H}{\partial z} - \frac{L^F}{2\gamma} [c^F_D - c^m_F(z)] \frac{\partial c^m_F}{\partial z} = 0 \quad (13)
\]

We assume that for the relevant range of \(z \) the profit function \(\pi(c^H_D, c^F_D, z) \) is strictly concave (i.e. \(\partial^2 \pi(c^H_D, c^F_D, z) / \partial z^2 < 0 \)) in order to have a well defined maximisation problem.

Moreover, we assume that the cost of communication \(\delta \) between the headquarters and the subsidiary is sufficiently large that \(z^H_p < z^F_p \). Under full adjustment to local conditions, the firm wants to implement more management autonomy in the subsidiary firm than in the parent firm. Given that \(z^H_p \) (resp. \(z^F_p \)) are the optimal organisational forms for the \(H \) market (resp. the \(F \) market), we have

\[
\frac{\partial c^m_H}{\partial z} (z^H_p) = \frac{\partial c^m_F}{\partial z} (z^F_p) = 0
\]
and $z_p^H < z_p^F$ implies
\[
\frac{\partial c_m^m}{\partial z} (z_p^F) > 0 \quad \text{and} \quad \frac{\partial c_m^m}{\partial z} (z_p^H) < 0
\]
we then get
\[
\frac{\partial \pi}{\partial z} (c_H^D, c_F^D, z_H^P) = \frac{L^F}{2\gamma} \left[c_F^m - c_F^m(z_F^P) \right] \frac{\partial c_m^m}{\partial z} (z_p^F) > 0
\]
\[
\frac{\partial \pi}{\partial z} (c_H^D, c_F^D, z_F^P) = \frac{L^H}{2\gamma} \left[c_H^m - c_H^m(z_H^P) \right] \frac{\partial c_m^m}{\partial z} (z_p^H) < 0
\]
The concavity of $\pi(c_H^D, c_F^D, z)$ then implies that the optimal joint organisational form z^* solution of (13) is such that $z_p^H < z^* < z_p^F$.

Differentiating (13), we get
\[
\frac{\partial^2 \pi}{\partial c_H^D \partial z} (c_H^D, c_F^D, z^*) = -\frac{L^H}{2\gamma} \frac{\partial c_m^m}{\partial z} (z^*) < 0
\]
\[
\frac{\partial^2 \pi}{\partial c_F^D \partial z} (c_H^D, c_F^D, z^*) = -\frac{L^F}{2\gamma} \frac{\partial c_m^m}{\partial z} (z^*) > 0
\]
This is so because we assume that $z_p^H < z_p^F$ and therefore $z_p^H < z^* < z_p^F$ and thus
\[
\frac{\partial c_m^m}{\partial z} (z^*) > \frac{\partial c_m^m}{\partial z} (z_p^H) = 0 \quad \text{and} \quad \frac{\partial c_m^m}{\partial z} (z^*) < \frac{\partial c_m^m}{\partial z} (z_p^F) = 0.
\]
From this, we obtain that $z^* \left[c_H^D, c_F^D \right]$. The multinational corporation with the ‘transplant’ strategy is more decentralised the tougher is the competition in the home market and it is more centralised the tougher is the competition in the host market. From this it follows that the marginal costs of production of the parent firm and the subsidiary firm are a function of the toughness of the competition in H and in F with the following signs:

\[
c_m^m (z^*) = f^H(c_H^D, c_F^D) \\
c_m^m (z_P^F) = f^F(c_H^D, c_F^D)
\]

QED.

• **Proof that** $c_m^m (z^*) < (1 + \theta^*) c_m^m (z_p^H)$:
Recall that the threshold condition is

\[L^H \left[(1 + \theta^*) c^m_H(z^H_p) - c^m_H(z^*) \right] \left[\frac{c^H_D - c^m_H(z^*) + (1 + \theta^*) c^m_H(z^H_p)}{2} \right] = L^F \left[c^m_F(z^*) - c^m_F(z^F_p) \right] \left[\frac{c^F_D - c^m_F(z^*) + c^m_F(z^F_p)}{2} \right] \]

(14)

Note that \(c^m_H(z^*) - c^m_F(z^F_p) > 0 \). As well \(c^F_D - c^m_F(z^*) > 0 \) and \(c^H_D > \max \{ c^m_H(z^*); (1 + \theta^*) c^m_H(z^H_p) \} \) in order to ensure that the multinational firms produce positive outputs in markets \(F \) and \(H \). Thus \(c^F_D - \frac{c^m_F(z^*) + c^m_F(z^F_p)}{2} > c^F_D - c^m_F(z^*) > 0 \). Therefore, it follows from Equation (14) that

\[c^m_H(z^*) < (1 + \theta^*) c^m_H(z^H_p) \]

- **Proof of Proposition 2:**

i) Comparative statics for market size \(L^H \): differentiation of the RHS of (10) with respect to \(L^H \) gives:

\[
\begin{align*}
\frac{1}{4\gamma} \left[c_H + \sqrt{\frac{4\gamma F_H}{L^H} - c^m_H(z^*)} \right] &- \frac{1}{4\gamma} \sqrt{\frac{4\gamma F_H}{L^H}} \left[c_H + \sqrt{\frac{4\gamma F_H}{L^H} - c^m_H(z^*)} \right] \\
- \frac{1}{4\gamma} \left[c_H + \sqrt{\frac{4\gamma F_H}{L^H} - (1 + \theta^*) c^m_H(z^H_p)} \right] &+ \frac{1}{4\gamma} \sqrt{\frac{4\gamma F_H}{L^H}} \left[c_H + \sqrt{\frac{4\gamma F_H}{L^H} - (1 + \theta^*) c^m_H(z^H_p)} \right] \\
= & \frac{1}{4\gamma} \left[c_H + \sqrt{\frac{4\gamma F_H}{L^H} - c^m_H(z^*)} \right] - \frac{1}{4\gamma} \left[c_H + \sqrt{\frac{4\gamma F_H}{L^H} - (1 + \theta^*) c^m_H(z^H_p)} \right] \\
+ & \frac{1}{4\gamma} \sqrt{\frac{4\gamma F_H}{L^H}} \left[c^m_H(z^*) - (1 + \theta^*) c^m_H(z^H_p) \right]
\end{align*}
\]

The RHS can be rewritten as

\[
\left((1 + \theta^*) c^m_H(z^H_p) - c^m_H(z^*) \right) \left[\frac{1}{4\gamma} \left(c_H + \sqrt{\frac{4\gamma F_H}{L^H}} - \frac{1}{4\gamma} c^m_H(z^*) \right) \right]
\]

\[
\left[-\frac{1}{4\gamma} (1 + \theta^*) c^m_H(z^H_p) - \frac{1}{4\gamma} \sqrt{\frac{4\gamma F_H}{L^H}} \right]
\]

\[
= \frac{1}{4\gamma} \left((1 + \theta^*) c^m_H(z^H_p) - c^m_H(z^*) \right) \left[c_H - c^m_H(z^*) \right] + \left[c_H - (1 + \theta^*) c^m_H(z^H_p) \right] \sqrt{\frac{4\gamma F_H}{L^H}} > 0
\]

Thus the equilibrium threshold \(\theta^* \) goes down and there is more multinational transplanting with a larger domestic market \(L^H \).
ii) Comparative statics for market size L^F: Similarly, differentiation of the RHS of (10) with respect to L^F gives

$$
\frac{1}{4\gamma} \left[c_F + \sqrt{\frac{4\gamma F_F}{L^F}} - c^m_F(z^*) \right]^2 - \frac{1}{4\gamma} \left[c_F + \sqrt{\frac{4\gamma F_F}{L^F}} - c^m_F(z^*) \right] \\
- \frac{1}{4\gamma} \left[c_F + \sqrt{\frac{4\gamma F_F}{L^F}} - c^m_F(z_F^p) \right]^2 + \frac{1}{4\gamma} \left[c_F + \sqrt{\frac{4\gamma F_H}{L^H}} - c^m_H(z^*) \right] \\
= \frac{1}{4\gamma} \left[c_F + \sqrt{\frac{4\gamma F_F}{L^F}} - c^m_F(z_F^p) \right]^2 - \frac{1}{4\gamma} \left[c_F + \sqrt{\frac{4\gamma F_F}{L^F}} - c^m_F(z^*) \right]^2 \\
+ \frac{1}{4\gamma} \sqrt{\frac{4\gamma F_F}{L^F}} \left[c^m_F(z^*) - c^m_F(z_F^p) \right]
$$

the RHS can be rewritten as

$$
\left(c^m_F(z_F^p) - c^m_F(z^*) \right) \cdot \left[\frac{1}{2\gamma} \left(c_F + \sqrt{\frac{4\gamma F_F}{L^F}} \right) - \frac{1}{4\gamma} c^m_F(z^*) \right] \\
- \frac{1}{4\gamma} c^m_F(z_F^p) - \frac{1}{4\gamma} \sqrt{\frac{4\gamma F_F}{L^F}} \\
= \frac{1}{4\gamma} \left(c^m_F(z_F^p) - c^m_F(z^*) \right) \cdot \left[c_F - c^m_F(z^*) \right] + \left[c_F - c^m_F(z_F^p) \right] + \sqrt{\frac{4\gamma F_F}{L^F}} \\
< 0
$$

Thus the equilibrium threshold θ^* goes up and there is less multinational transplanting with a larger foreign market L^F.

iii) Comparative statics for F_H (fixed costs of local firms or index of local competition).

Differentiation of the RHS of (10) with respect to F_H gives

$$
\frac{L^H}{4\gamma} \left[c_H + \sqrt{\frac{4\gamma F_H}{L^H}} - c^m_H(z^*) \right] \sqrt{\frac{4\gamma}{L^HF_H}} \\
- \frac{L^H}{4\gamma} \left[c_H + \sqrt{\frac{4\gamma F_H}{L^H}} - (1 + \theta^*) c^m_H(z_F^p) \right] \sqrt{\frac{4\gamma}{L^HF_H}} \\
= \frac{L^H}{4\gamma} \sqrt{\frac{4\gamma}{L^HF_H}} \left[(1 + \theta^*) c^m_H(z_F^p) - c^m_H(z^*) \right] > 0
$$

thus θ^* goes down and there is more transplanting with less home market competition (higher F_H).

iv) Comparative statics for F_F (fixed costs of local firms or index of local competition).
Similarly, differentiation of the RHS of (10) with respect to F gives

$$
\frac{L^F}{4\gamma} \left[c_F + \sqrt{\frac{4\gamma F^F}{L^F} - c^m_F(z^*)} \right] \sqrt{\frac{4\gamma}{L^F F^F}}
- \frac{L^F}{4\gamma} \left[c_F + \sqrt{\frac{4\gamma F^F}{L^F} - c^m_F(z^F)} \right] \sqrt{\frac{4\gamma}{L^F F^F}}

= \frac{L^F}{4\gamma} \sqrt{\frac{4\gamma}{L^F F^F}} \left[c^m_F(z^F) - c^m_F(z^*) \right] < 0
$$

thus θ^* goes up and there is less multinational transplanting with weaker competition in the host market (larger F_F).

QED.

• Proof of Proposition 3:

i) Comparative statics with respect to a^H_p: differentiation of the RHS of (10) with respect to a^H_p gives

$$
- \frac{L^H}{2\gamma} \left[c_H + \sqrt{\frac{4\gamma F^H}{L^H} - c^m_H(z^*)} \right] \frac{\partial c^m_H(z^*)}{\partial a^H_p}
+ \frac{L^H}{2\gamma} \left[c_H + \sqrt{\frac{4\gamma F^H}{L^H} - (1 + \theta^*) c^m_H(z^H)} \right] (1 + \theta^*) \frac{\partial c^m_H(z^H)}{\partial a^H_p}
$$

or

$$
- \left[c_H + \sqrt{\frac{4\gamma F^H}{L^H} - c^m_H(z^*)} \right] z^* + \left[c_H + \sqrt{\frac{4\gamma F^H}{L^H} - (1 + \theta^*) c^m_H(z^H)} \right] (1 + \theta^*) z^H

= \left[c_H + \sqrt{\frac{4\gamma F^H}{L^H}} \right] (1 + \theta^*) z^H - z^* + c^m_H(z^*) z^* - (1 + \theta^*) c^m_H(z^H) (1 + \theta^*) z^H
$$
This can be rewritten as

\[
\begin{align*}
&\left[c_H + \sqrt{\frac{4\gamma F_H}{L^H}} \left((1 + \theta^*) z_p^H - z^*\right) + c_H^m(z^*) (z^* - (1 + \theta^*) z_p^H) \right] \\
&\quad + \left(c_H^m(z^*) - (1 + \theta^*) c_H^m(z_p^H)\right) (1 + \theta^*) z_p^H \\
&= \left[c_H + \sqrt{\frac{4\gamma F_H}{L^H}} - c_H^m(z^*) \right] \left((1 + \theta^*) z_p^H - z^*\right) \\
&\quad + \left(c_H^m(z^*) - (1 + \theta^*) c_H^m(z_p^H)\right) (1 + \theta^*) z_p^H
\end{align*}
\]

When \((1 + \theta^*) z_p^H - z^* < 0\), the sign of the preceding expression is negative. \(\theta^*\) goes up and there is less multinational transplanting with larger training cost \(a_p^H\) in \(H\).

ii) Comparative statics with respect to \(a_p^F\); similarly differentiation of the RHS of (10) with respect to \(a_p^F\) gives

\[
-\frac{L^F}{2\gamma} \left[c_F + \sqrt{\frac{4\gamma F_F}{L^F}} - c_F^m(z^*) \right] \frac{\partial c_F^m(z_p^F)}{\partial a_p^F} \\
+ \frac{L^F}{2\gamma} \left[c_F + \sqrt{\frac{4\gamma F_F}{L^F}} - c_F^m(z_p^F) \right] \frac{\partial c_F^m(z_p^F)}{\partial a_p^F}
\]

or

\[
- \left[c_F + \sqrt{\frac{4\gamma F_F}{L^F}} - c_F^m(z^*) \right] z^* + \left[c_F + \sqrt{\frac{4\gamma F_F}{L^F}} - c_F^m(z_p^F) \right] z_p^F \\
= \left[c_F + \sqrt{\frac{4\gamma F_F}{L^F}} \right] \left(z_p^F - z^*\right) + c_F^m(z^*) z^* - c_F^m(z_p^F) z_p^F
\]

which gives

\[
\begin{align*}
&\left[c_F + \sqrt{\frac{4\gamma F_F}{L^F}} \left(z_p^F - z^*\right) + c_F^m(z^*) \left(z^* - z_p^F\right) + \left(c_F^m(z^*) - c_F^m(z_p^F)\right) z_p^F \right] \\
&= c_F + \sqrt{\frac{4\gamma F_F}{L^F}} \left(z_p^F - z^*\right) + \left(c_F^m(z^*) - c_F^m(z_p^F)\right) z_p^F \\
&> 0
\end{align*}
\]
In this case, θ^* goes down, and there is more multinational transplanting associated with larger training cost in F. QED.

- Proposition 4: Comparative statics for communication costs

Comparative statics with respect to δ: differentiation of the RHS of (10) with respect to δ gives

\[
\frac{-L^F}{2\gamma} \left[c_F + \sqrt{\frac{A\gamma F_F}{L^F}} - c^m_F(z^*) \right] \frac{\partial c^m_F(z^*)}{\partial \delta} + \frac{L^F}{2\gamma} \left[c_F + \sqrt{\frac{A\gamma F_F}{L^F}} - c^m_F(z^F_p) \right] \frac{\partial c^m_F(z^F_p)}{\partial \delta}
\]

which is proportional to

\[
\begin{align*}
&- \left[c_F + \sqrt{\frac{A\gamma F_F}{L^F}} - c^m_F(z^*) \right] [1 - F(z^*)] + \left[c_F + \sqrt{\frac{A\gamma F_F}{L^F}} - c^m_F(z^F_p) \right] [1 - F(z^F_p)] \\
&= \left[c_F + \sqrt{\frac{A\gamma F_F}{L^F}} \right] (F(z^*) - F(z^F_p)) + c^m_F(z^*)[1 - F(z^*)] - c^m_F(z^F_p)[1 - F(z^F_p)]
\end{align*}
\]

or

\[
\left[c_F + \sqrt{\frac{A\gamma F_F}{L^F}} - c^m_F(z^*) \right] \left(F(z^*) - F(z^F_p) \right) + \left(c^m_F(z^*) - c^m_F(z^F_p) \right) \left[1 - F(z^F_p) \right] \geq 0
\]

The sign is ambiguous. However when z^F_p is close to 1 (full decentralisation) and/or $c^m_F(z^*) - c^m_F(z^F_p)$ is small (not much loss of productive efficiency of a subsidiary firm that is subject to the ‘transplant’ strategy), then the second term is small and we get a negative sign for the expression above. In this case, an increase in communication costs tends to reduce multinational transplanting in the industry.

B Appendix: Data and Results
Figure 7: THE FREQUENCY OF TRANSPLANTING THE ORGANISATIONAL FORM

Notes: The organisational form is fully transplanted if each corporate decision obtained the same hierarchical rank for the subsidiary firm as for the parent firm (i.e., 13 transplanted corporate decisions). It is close-to-fully transplanted if the hierarchical rank of only one corporate decision differs (i.e., 12 transplanted corporate decisions) and partially transplanted if two corporate decisions differ in hierarchical rank (i.e., 11 transplanted corporate decisions). The organisational form is not transplanted if three or more corporate decisions are different (i.e., 0-10 transplanted corporate decisions).
Table 7: Corporate Decisions in Subsidiary and Parent Firms

<table>
<thead>
<tr>
<th>Corporate decision</th>
<th>Affiliates with the same hierarchical rank as parent firms(^1)</th>
<th>Mean level of decentralisation(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>on acquisitions</td>
<td>78%</td>
<td>1.41</td>
</tr>
<tr>
<td>to hire a new secretary</td>
<td>70%</td>
<td>4.65</td>
</tr>
<tr>
<td>to hire two new workers</td>
<td>64%</td>
<td>4.26</td>
</tr>
<tr>
<td>to change a supplier</td>
<td>61%</td>
<td>3.23</td>
</tr>
<tr>
<td>on transfer prices</td>
<td>61%</td>
<td>2.43</td>
</tr>
<tr>
<td>on budget</td>
<td>60%</td>
<td>2.72</td>
</tr>
<tr>
<td>to hire 20 new workers</td>
<td>59%</td>
<td>2.82</td>
</tr>
<tr>
<td>to introduce a new product</td>
<td>55%</td>
<td>2.80</td>
</tr>
<tr>
<td>on wage increase</td>
<td>55%</td>
<td>4.10</td>
</tr>
<tr>
<td>on product price</td>
<td>54%</td>
<td>3.75</td>
</tr>
<tr>
<td>on a new strategy</td>
<td>54%</td>
<td>1.88</td>
</tr>
<tr>
<td>financial decisions</td>
<td>52%</td>
<td>2.54</td>
</tr>
<tr>
<td>on R&D expenditure</td>
<td>51%</td>
<td>2.58</td>
</tr>
</tbody>
</table>

\(^1\) The corporate decisions listed were collected for both German and Austrian parent firms as well as all subsidiary firms and are sorted from the most similar decisions in affiliate firms compared with parent firms to the least similar decisions.

\(^2\) Percentage of affiliate firms in which a particular decision is taken at the same hierarchical level as in its parent firm.

\(^3\) Mean over the rank of one to five with one (centralised) meaning only the headquarters of the parent firm takes the decision, and five (decentralised), the decision is delegated to the divisional manager (parent firm) or to the affiliate manager (affiliate firm).
Table 8: Description of Variables and Data Sources

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate Culture</td>
<td>Full transplantation dummy that takes the value 1 if the organisational form is fully transplanted from the parent firm to its subsidiary and 0 otherwise; full transplantation means that all corporate decisions obtained the same hierarchical rank for the parent firm as for the subsidiary firm.</td>
</tr>
<tr>
<td></td>
<td>Close-to-full transplantation dummy that takes the value 1 if the organisational form is close-to-fully transplanted from the parent firm to its subsidiary and 0 otherwise; close-to-full transplantation means that either each corporate decision obtained the same hierarchical rank for the parent firm as for the subsidiary firm or only one corporate decision differs.</td>
</tr>
<tr>
<td></td>
<td>Partial transplantation dummy that takes the value 1 if the organisational form is partially transplanted from the parent firm to its subsidiary and 0 otherwise; partial transplantation means that either each corporate decision obtained the same hierarchical rank for the parent firm as for the subsidiary firm or the rank differs for up to two corporate decisions.</td>
</tr>
<tr>
<td></td>
<td>Decentralisation of parent firm mean of ranking between one (centralised) and five (decentralised) of several corporate decisions depending on whether the headquarters (centralised) or the divisional manager of the parent firm (decentralised) makes the decision; see Table 7 for a listing of corporate decisions.</td>
</tr>
<tr>
<td></td>
<td>Decentralisation of subsidiary firm mean of ranking between one (centralised) and five (decentralised) of several corporate decisions depending on whether the headquarters of the parent firm (centralised) or the subsidiary manager (decentralised) makes the decision; see Table 7 for a listing of corporate decisions.</td>
</tr>
<tr>
<td></td>
<td>Decentralisation of multinational mean of decentralisation of parent and subsidiary firm with the ‘transplant’ strategy (three versions of this variable are derived, depending on whether the ‘transplant’ strategy refers to (i) full transplantation, (ii) close-to-full transplantation or (iii) partial transplantation).</td>
</tr>
<tr>
<td>Human resource policy</td>
<td>Incentive salary in parent firm dummy that takes the value 1 if the parent firm incentivises performance through salary increases and 0 otherwise.</td>
</tr>
<tr>
<td>Communication costs</td>
<td>Distance distance between the parent and the subsidiary firm in km.</td>
</tr>
<tr>
<td>Technology</td>
<td>Technology is outdated dummy that takes the value 1 if the technology of the investment project is fully established or outdated and 0 otherwise.</td>
</tr>
<tr>
<td></td>
<td>Technology is established dummy that takes the value 1 if the technology of the investment project is relatively established and 0 otherwise.</td>
</tr>
<tr>
<td></td>
<td>Technology is innovative dummy that takes the value 1 if the technology of the investment project is new and 0 otherwise.</td>
</tr>
<tr>
<td>The Size of Home and Host Markets</td>
<td>Population of host country population of the host country, reference year: 2000.</td>
</tr>
<tr>
<td></td>
<td>GDP of host country GDP of the host country in USD, reference year: 2000.</td>
</tr>
<tr>
<td></td>
<td>GDP of home country GDP of the home country in USD, reference year: 2000.</td>
</tr>
</tbody>
</table>

Continued on next page ...
Variable Description
Population ratio (host/home) ratio of host country population to home country population, reference year: 2000
GDP ratio (host/home) ratio of host country GDP to home country GDP, reference year: 2000

→ Source of population and GDP data: World Development Indicators (WorldBank, 2011)

Market Competition
Share of multinationals, host market ratio of the number of enterprises or establishments with inward FDI activity to the total number of enterprises and establishments at the two-digit ISIC Rev. 3 level in host market (in percent), reference year: 2000
Share of multinationals, home market ratio of the number of enterprises or establishments with inward FDI activity to the total number of enterprises and establishments at the two-digit ISIC Rev. 3 level in home market (in percent), reference year: 2000
Many domestic competitors, subsidiary dummy that takes the value 1 if the subsidiary firm faces many competitors at the domestic market and 0 otherwise
Many domestic competitors, parent dummy that takes the value 1 if the parent firm faces many competitors at the domestic market and 0 otherwise
Many world competitors, subsidiary dummy that takes the value 1 if the subsidiary firm faces many competitors worldwide and 0 otherwise
Many world competitors, parent dummy that takes the value 1 if the parent firm faces many competitors worldwide and 0 otherwise
Host market Lerner for a three-digit ISIC Rev. 3 industry j of host country k:

$$Lerner_{jk} = \left(1 - \frac{1}{N_{jk}} \sum_{i \in jk} \frac{\text{profit before taxes}_i}{\text{operating revenue}_i}\right) \times 100\%,$$

where N_{jk} denotes the number of firms i in industry j of country k; a simple average over the years 1996 to 2000 is taken in addition

Home market Lerner calculated as Host market Lerner, but for the home countries Austria and Germany

→ Source of FDI data: Activity of Multinationals (OECD, 2012)
→ Source of data on total number of firms: Structural Analysis database (OECD, 2009)
→ Source of profit and revenue data: AMADEUS database (BureauVanDijk, 2005)

Training Costs of Managers
Skill endowment of host country share of population with secondary or higher education in a host country (in percent), reference year: 2000
Skill endowment of home country share of population with secondary or higher education in a home country (in percent), reference year: 2000
Wage skill premium, host market ratio of labour compensation of highly- and medium-skilled labour force per hour to average labour compensation per hour in a host country at two-digit ISIC Rev. 3 industry level, reference year: 2000
Wage skill premium, home market ratio of labour compensation of highly- and medium-skilled labour force per hour to average labour compensation per hour in a home country at two-digit ISIC Rev. 3 industry level, reference year: 2000

→ Source of labour compensation: EU KLEMS database (EUKLEMS, 2008)

Firm size controls
Size of parent firm number of employees of parent firm
Size of subsidiary firm number of employees of subsidiary firm

Continued on next page …
Variable Description

Survey controls
- **Respondent is an executive**: dummy that takes the value 1 if the respondent to the survey was an executive and 0 otherwise.
- **Respondent is a middle manager**: dummy that takes the value 1 if the respondent to the survey was a middle manager (i.e. divisional manager) and 0 otherwise.

Other controls
- **Home country dummy**: dummy that takes the value 1 if the parent firm is located in Germany and 0 otherwise.
- **Host country dummies**: country dummies for the location of subsidiary firm.
- **Industry dummies**: one-digit industry dummies for the subsidiary firm based on ISIC Rev. 3.

Notes: If not reported otherwise, the data come from a survey of 660 German and Austrian firms with 2200 investment projects in Eastern Europe, conducted by the Chair of International Economics at the University of Munich.
Table 9: Descriptive Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs.</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Std. Dev.</th>
<th>Obs. with dummy = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate Culture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full transplantation</td>
<td>1335</td>
<td>0.15</td>
<td>0</td>
<td>1</td>
<td>0.35</td>
<td>196</td>
</tr>
<tr>
<td>Close-to-full transplantation</td>
<td>1335</td>
<td>0.24</td>
<td>0</td>
<td>1</td>
<td>0.43</td>
<td>318</td>
</tr>
<tr>
<td>Partial transplantation</td>
<td>1335</td>
<td>0.32</td>
<td>0</td>
<td>1</td>
<td>0.47</td>
<td>422</td>
</tr>
<tr>
<td>Decentralisation of parent firm</td>
<td>1472</td>
<td>2.81</td>
<td>1</td>
<td>5</td>
<td>0.84</td>
<td>.</td>
</tr>
<tr>
<td>Decentralisation of subsidiary firm</td>
<td>1388</td>
<td>2.95</td>
<td>1</td>
<td>5</td>
<td>0.69</td>
<td>.</td>
</tr>
<tr>
<td>Decentralisation of multinational</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ under full transplantation</td>
<td>196</td>
<td>2.94</td>
<td>1</td>
<td>4.44</td>
<td>0.75</td>
<td>.</td>
</tr>
<tr>
<td>→ under close-to-full transplantation</td>
<td>318</td>
<td>3.03</td>
<td>1</td>
<td>4.73</td>
<td>0.69</td>
<td>.</td>
</tr>
<tr>
<td>→ under partial transplantation</td>
<td>422</td>
<td>2.99</td>
<td>1</td>
<td>4.73</td>
<td>0.67</td>
<td>.</td>
</tr>
<tr>
<td>Incentive salary in parent firm</td>
<td>1549</td>
<td>0.14</td>
<td>0</td>
<td>1</td>
<td>0.34</td>
<td>210</td>
</tr>
<tr>
<td>Communication Costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td>2122</td>
<td>903.04</td>
<td>17</td>
<td>6000</td>
<td>799.24</td>
<td>.</td>
</tr>
<tr>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology is outdated</td>
<td>1826</td>
<td>0.32</td>
<td>0</td>
<td>1</td>
<td>0.47</td>
<td>585</td>
</tr>
<tr>
<td>Technology is established</td>
<td>1826</td>
<td>0.60</td>
<td>0</td>
<td>1</td>
<td>0.49</td>
<td>1099</td>
</tr>
<tr>
<td>Technology is innovative</td>
<td>1826</td>
<td>0.08</td>
<td>0</td>
<td>1</td>
<td>0.27</td>
<td>142</td>
</tr>
<tr>
<td>The Size of Host and Home Markets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population of host country (millions)</td>
<td>2122</td>
<td>24.9</td>
<td>1.37</td>
<td>146.3</td>
<td>35.25</td>
<td>.</td>
</tr>
<tr>
<td>Population of home country (millions)</td>
<td>2123</td>
<td>49.46</td>
<td>8.01</td>
<td>82.21</td>
<td>36.85</td>
<td>.</td>
</tr>
<tr>
<td>Population ratio (host/home)</td>
<td>2122</td>
<td>1.18</td>
<td>0.2</td>
<td>18.2</td>
<td>2.29</td>
<td>.</td>
</tr>
<tr>
<td>GDP of host country (billions US$)</td>
<td>2122</td>
<td>78.4</td>
<td>0.86</td>
<td>260</td>
<td>72.58</td>
<td>.</td>
</tr>
<tr>
<td>GDP of home country (billions US$)</td>
<td>2123</td>
<td>1145.9</td>
<td>191.20</td>
<td>1900.22</td>
<td>848.81</td>
<td>.</td>
</tr>
<tr>
<td>GDP ratio (host/home)</td>
<td>2122</td>
<td>0.17</td>
<td>0.0005</td>
<td>1.36</td>
<td>0.25</td>
<td>.</td>
</tr>
<tr>
<td>Market Competition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share of multinationals, host market</td>
<td>1281</td>
<td>1.79</td>
<td>0</td>
<td>27.6</td>
<td>4.47</td>
<td>.</td>
</tr>
<tr>
<td>Share of multinationals, home market</td>
<td>1862</td>
<td>1.31</td>
<td>0</td>
<td>18.45</td>
<td>3.13</td>
<td>.</td>
</tr>
<tr>
<td>Many domestic competitors, subsidiary</td>
<td>1978</td>
<td>0.46</td>
<td>0</td>
<td>1</td>
<td>0.50</td>
<td>900</td>
</tr>
<tr>
<td>Many domestic competitors, parent</td>
<td>2058</td>
<td>0.46</td>
<td>0</td>
<td>1</td>
<td>0.50</td>
<td>940</td>
</tr>
<tr>
<td>Many world competitors, subsidiary</td>
<td>1938</td>
<td>0.29</td>
<td>0</td>
<td>1</td>
<td>0.45</td>
<td>563</td>
</tr>
<tr>
<td>Many world competitors, parent</td>
<td>2010</td>
<td>0.73</td>
<td>0</td>
<td>1</td>
<td>0.45</td>
<td>1463</td>
</tr>
<tr>
<td>Host market Lerner</td>
<td>1900</td>
<td>96.57</td>
<td>54.73</td>
<td>124.56</td>
<td>4.42</td>
<td>.</td>
</tr>
<tr>
<td>Home market Lerner</td>
<td>2053</td>
<td>93.68</td>
<td>73.15</td>
<td>121.58</td>
<td>6.14</td>
<td>.</td>
</tr>
<tr>
<td>Training Costs of Managers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skill endowment of host country</td>
<td>1391</td>
<td>80.26</td>
<td>70</td>
<td>86</td>
<td>6.42</td>
<td>.</td>
</tr>
<tr>
<td>Skill endowment of home country</td>
<td>2123</td>
<td>79.35</td>
<td>76</td>
<td>82</td>
<td>2.98</td>
<td>.</td>
</tr>
<tr>
<td>Wage skill premium, host market</td>
<td>1472</td>
<td>1.99</td>
<td>1.34</td>
<td>3.11</td>
<td>0.43</td>
<td>.</td>
</tr>
<tr>
<td>Wage skill premium, home market</td>
<td>2117</td>
<td>1.68</td>
<td>1.21</td>
<td>2.24</td>
<td>0.26</td>
<td>.</td>
</tr>
<tr>
<td>Firm size controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size of parent firm</td>
<td>1993</td>
<td>6970.20</td>
<td>1</td>
<td>233000</td>
<td>25233.78</td>
<td>.</td>
</tr>
<tr>
<td>Size of subsidiary firm</td>
<td>1921</td>
<td>346.61</td>
<td>1</td>
<td>49000</td>
<td>1660.02</td>
<td>.</td>
</tr>
<tr>
<td>Survey controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respondent is an executive</td>
<td>2123</td>
<td>0.19</td>
<td>0</td>
<td>1</td>
<td>0.40</td>
<td>411</td>
</tr>
<tr>
<td>Respondent is a middle manager</td>
<td>2123</td>
<td>0.08</td>
<td>0</td>
<td>1</td>
<td>0.27</td>
<td>162</td>
</tr>
</tbody>
</table>
Table 10: Determinants of Full, Close-to-full and Partial Transplantation

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transplantation</td>
<td>Full</td>
<td>Close-to-full</td>
<td>Partial</td>
<td>Full</td>
<td>Close-to-full</td>
<td>Partial</td>
</tr>
<tr>
<td>Human resource policy</td>
<td>Incentive salary in parent firm</td>
<td>0.57***</td>
<td>0.87***</td>
<td>0.31</td>
<td>0.53**</td>
<td>0.83***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.01)</td>
<td>(0.00)</td>
<td>(0.10)</td>
<td>(0.02)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Communication costs</td>
<td>Log (distance)</td>
<td>-0.44***</td>
<td>-0.34***</td>
<td>-0.37***</td>
<td>-0.42***</td>
<td>-0.30***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Technology</td>
<td>Technology is established</td>
<td>0.32**</td>
<td>0.19</td>
<td>0.23*</td>
<td>0.40***</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.04)</td>
<td>(0.19)</td>
<td>(0.08)</td>
<td>(0.01)</td>
<td>(0.15)</td>
</tr>
<tr>
<td></td>
<td>Technology is innovative</td>
<td>0.76***</td>
<td>0.51**</td>
<td>0.48**</td>
<td>1.00***</td>
<td>0.73***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.00)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Size of the market</td>
<td>Log (population ratio)</td>
<td>0.12</td>
<td>0.07</td>
<td>0.12</td>
<td>0.08</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.39)</td>
<td>(0.57)</td>
<td>(0.28)</td>
<td>(0.58)</td>
<td>(0.88)</td>
</tr>
<tr>
<td>Market competition</td>
<td>Share of multinationals, host market</td>
<td>0.05***</td>
<td>0.05***</td>
<td>0.01</td>
<td>0.05***</td>
<td>0.05***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.40)</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td></td>
<td>Share of multinationals, home market</td>
<td>-0.07***</td>
<td>-0.05**</td>
<td>-0.03</td>
<td>-0.09***</td>
<td>-0.06***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.01)</td>
<td>(0.12)</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Training costs of managers</td>
<td>Skill endowment of host country</td>
<td>-0.04***</td>
<td>-0.03***</td>
<td>-0.01</td>
<td>-0.04***</td>
<td>-0.03***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.01)</td>
<td>(0.10)</td>
<td>(0.00)</td>
<td>(0.01)</td>
</tr>
<tr>
<td></td>
<td>Skill endowment of home country</td>
<td>0.05</td>
<td>0.01</td>
<td>0.14***</td>
<td>-0.00</td>
<td>-0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.43)</td>
<td>(0.86)</td>
<td>(0.01)</td>
<td>(0.95)</td>
<td>(0.44)</td>
</tr>
<tr>
<td>Observations</td>
<td>547</td>
<td>547</td>
<td>547</td>
<td>547</td>
<td>547</td>
<td>547</td>
</tr>
<tr>
<td>Pseudo R^2</td>
<td>0.110</td>
<td>0.089</td>
<td>0.052</td>
<td>0.147</td>
<td>0.120</td>
<td>0.084</td>
</tr>
</tbody>
</table>

Notes: * significant at 10%, ** significant at 5%, *** significant at 1%. Probit estimates with robust standard errors. The p-values are reported in parentheses. The dependent variable full transplantation is a dummy that takes the value 1 if the organisational form is fully transplanted, i.e. if each corporate decision obtained the same hierarchical rank for the parent firm as for the subsidiary firm. The dependent variable close-to-full transplantation is a dummy that takes the value 1 if each corporate decision obtained the same hierarchical rank for the parent firm as for the subsidiary firm or if one corporate decision differs. The dependent variable partial transplantation is a dummy that takes the value 1 if each corporate decision obtained the same hierarchical rank for the parent firm as for the subsidiary firm or if up to two corporate decision differ. Incentive salary in parent firm is a dummy that takes the value 1 if the parent firm incentivises performance through salary increases. Distance is the distance between parent and subsidiary firm in km. Technology is established and technology is innovative are dummy variables that indicate the nature of the technology transferred to the subsidiary firm, while technology is outdated is the omitted category. Population ratio is the ratio of the population in the host to the population of the home country. Share of multinationals is the share of multinational firms in total firms operating in a market and skill endowment is the share of population with secondary education or higher in a country (both shares are expressed in percent). Size controls refer to the log of the number of employees in the parent and subsidiary firms. Survey controls include two dummy variables, which indicate whether the survey respondent is an executive or a middle (i.e. division) manager. See also Table 8 in Appendix for more detailed definitions of the variables.